- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个包含 142 个数据条目的数据集:两次测量 121 个人(两年,治疗前和治疗后,年份 = 0 或 1),第二年有 46 个人在处理区,其余在控制区绘图(处理 = 0 或 1)。以下是一些示例数据:
ID <- c("480", "480", "620", "620","712","712")
Year <- c("0", "1", "0", "1","0", "1")
Plot <- c("14", "14", "13", "13","20","20")
Treat <- c("0", "0", "0", "1", "0", "1")
Exp <- c("31", "43", "44", "36", "29", "71")
ExpSqrt <- c("5.567764", "6.557439", "6.633250", "6.000000", "5.385165", "8.426150")
Winter <- data.frame(ID, Year, Plot, Treat,
Exp, ExpSqrt,
stringsAsFactors = TRUE)
地 block 和个体是随机因素,我正在尝试拟合混合模型来确定年份、治疗以及它们之间的相互作用的影响:
model_Exp <- lmer(ExpSqrt~Year+Treat+Year*Treat+(1|ID)+(1|Plot),data=Winter)
但我不断收到警告消息:
"fixed-effect model matrix is rank deficient so dropping 1 column / coefficient"
这会删除交互。
我的数据集中没有 NA 值,Exp 始终为正,但我已对其进行 sqrt 转换,因为分布是非正态的。这不是一个特别小的数据集,我尝试使用 caret 包中的函数 findLinearCombos 但它没有返回结果。
我的理解是存在一些问题,因为处理 1 仅在条件 Year=1 下发生(但并非在所有情况下:Year=1 还包含 75 个对照个体)。
我不确定 a) 如何或是否可以解决这个问题?或者 b) 如果无法解决如何解释?
我已经阅读了有关此警告的一些回复,但已完成我发现建议解决该问题的所有内容,我还阅读了一些有关 Hauck-Donner 效应的内容,但我不确定这是否是我的问题并且相对而言我不承认我完全理解统计数据。
最佳答案
这实际上并不是一个具体的线性混合模型问题。
归根结底,如果您在“之前”期间(第 0 年)没有进行任何治疗,则无法估计交互作用。
最简单的示例:
(dd <- data.frame(y=1:3,treat=c(0,0,1),year=c(0,1,1)))
## y treat year
## 1 1 0 0
## 2 2 0 1
## 3 3 1 1
拟合模型:
lm(y~treat*year,dd) ## == year+treat+year:treat
## Call:
## lm(formula = y ~ treat * year, data = dd)
##
## Coefficients:
## (Intercept) treat year treat:year
## 1 1 1 NA
lm
不会警告您,但它通过删除额外的共线列并为其参数赋予 NA< 来有效地执行与
值。如果您尝试 lmer
相同的操作caret::findLinearCombos(dd[c("year","treat")])
您将不会得到任何返回(year
和 treat
并不完全共线),但是如果您查看 R 构建的包含处理列的模型矩阵,您会得到一些结果:
X <- model.matrix(~year*treat,dd)
caret::findLinearCombos(X)
## $linearCombos
## $linearCombos[[1]]
## [1] 4 3
## $remove
## [1] 4
这个实验设计根本不允许您估计交互作用。如果您从公式中删除它(使用 year+treat
而不是 year*treat
),您将得到相同的答案,但没有消息。或者,在典型的“控制影响前”设计(在环境影响评估中)中,您可以将将接受治疗的个体标记为“影响”或“治疗”个体,甚至在第 0 年;那么交互作用就是您实际估计的治疗效果。
关于排名不足警告混合模型 lmer,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38766155/
我有一个包含 142 个数据条目的数据集:两次测量 121 个人(两年,治疗前和治疗后,年份 = 0 或 1),第二年有 46 个人在处理区,其余在控制区绘图(处理 = 0 或 1)。以下是一些示例数
我正在尝试编写一个函数来收集我在脚本中经常使用的一些调用 我在我的例子中使用了 lme4 包的 sleepstudy 数据 这是我开始使用的功能(的简化版本): trimModel1 <- funct
我经常遇到这个问题:我想用约束拟合多级回归。我不知道该怎么做。我通常最终会使用 lavaan,因为它允许对回归系数设置约束。但它仍然不能有随机斜率模型(只有随机截距,事实是我也不知道如何在 lavaa
我有一个具有以下结构的数据框: > t str(t) 'data.frame': 699 obs. of 7 variables: $ Awns : int 0
我正在尝试使用 lmer 函数运行混合效果模型。我的实验包括使用一些相同的个体在不同温度下的代谢率(一些缺失数据)。文本文件的结构如下所示: > str(data.by.animal) 'data.f
lme4 包中的函数lmer 默认使用minqa 包中的bobyqa 作为优化算法。 根据以下帖子https://stat.ethz.ch/pipermail/r-sig-mixed-models/2
我正在使用 lme4 运行混合模型在 R: full_mod3=lmer(logcptplus1 ~ logdepth*logcobb + (1|fyear) + (1 |flocation), da
我有一些纵向数据,我想从中获得指定时间的预测均值。该模型包括 2 个项,它们的交互作用和时间变量的样条项。当我尝试获取预测均值时,我得到“mm %*% fixef(m4) 中的错误:不一致的参数” 我
我目前正在尝试帮助一位同事,但我根本找不到解决方案。所以我希望其他人可以帮助我们。 我有一个数据集,其中包含使用不同研究设计评估的权重数据,针对不同研究中的不同物种(一项研究包括多种设计和多种物种)。
我正在为具有 4 个级别的预测器 root.type 上的单个响应变量运行线性混合模型;当我运行模型时,我只想要有关整个因素的信息,但它一直将其拆分为多个级别。有什么想法吗? Ca.auto |t|)
当您有一个包含大量因素和相互作用的多级模型时,固定效应矩阵的相关性大小可能会变得非常大且不清楚。 我可以使用 symbolic.cor=T打印方法中的参数以更清晰地打印摘要,如下所示: ratbrai
我想使用回归模型而不是“方差分析”(AOV)函数在 R 中运行重复测量方差分析。 这是我的 3 个主题内因素的 AOV 代码示例: m.aov<-aov(measure~(task*region*ac
我对混合模型使用了以下语法,然后 step 但它不起作用。 它通常是这样工作的还是我实际上不能使用 lmer 使用反向消除?谢谢! fullmodel<-lmer(Eeff~NDF+ADF+CP+NE
我有四个位置和四个基板的移植实验(取自每个位置)。我已经确定了每个位置和基质组合中每个种群的存活率。本实验重复 3 次。 我创建了一个 lmm 如下: Survival.model <- lmer(S
我需要提取 standard error来自 lmer 输出的方差分量. library(lme4) model <- lmer(Reaction ~ Days + (1|Subject), slee
我在 R 装了一个模型与 lmer() -功能来自 lme4包裹。我缩放了因变量: mod fixef(mod) (Intercept) X1 X2
我已经拟合了一个 lmer 模型,现在我正在尝试根据实际系数而不是缩放系数来解释系数。 我的顶级模特是: lmer(logcptplus1~scale.t6+scale.logdepth+(1|lo
我刚刚将 lme4 更新到 1.0-4 版,当我运行 lmer() 时,我之前收敛的混合效果模型现在会打印此警告: Warning message: In (function (fn, par, lo
我曾经使用下面的代码来计算 lmer 模型的标准化系数。但是,随着 lme 的新版本,返回对象的结构发生了变化。 如何调整函数 stdCoef.lmer 以使其与新的 lme4 版本一起使用? # I
我正在尝试在 drake 计划中安装一些 lme4::lmer 模型,但出现错误 'data' not found, and some variables missing from formula e
我是一名优秀的程序员,十分优秀!