gpt4 book ai didi

python - Keras ValueError : Shapes (32, 2) 和 (32, 4) 不兼容

转载 作者:行者123 更新时间:2023-12-01 23:56:57 25 4
gpt4 key购买 nike

我刚刚发布了相同代码的另一个问题,但由于我对自己在做什么知之甚少,所以进展非常缓慢。上一个问题的链接在这里: Keras ValueError: No gradients provided for any variable

我目前正在尝试运行我的模型,以便对 5000 个不同的事件进行分类,这些事件是 29x29 值的二维 numpy 数组

我这样定义我的神经网络:

inputs = keras.Input(shape=(29,29,1))

x=inputs

x = keras.layers.Conv2D(16, kernel_size=(3,3), name='Conv_1')(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.MaxPool2D((2,2), name='MaxPool_1')(x)

x = keras.layers.Conv2D(16, kernel_size=(3,3), name='Conv_2')(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.MaxPool2D((2,2), name='MaxPool_2')(x)

x = keras.layers.Conv2D(32, kernel_size=(3,3), name='Conv_3')(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.MaxPool2D((2,2), name='MaxPool_3')(x)
x = keras.layers.Flatten(name='Flatten')(x)

x = keras.layers.Dense(64, name='Dense_1')(x)
x = keras.layers.ReLU(name='ReLU_dense_1')(x)
x = keras.layers.Dense(64, name='Dense_2')(x)
x = keras.layers.ReLU(name='ReLU_dense_2')(x)

outputs = keras.layers.Dense(4, activation='softmax', name='Output')(x)

model = keras.Model(inputs=inputs, outputs=outputs, name='VGGlike_CNN')
model.summary()

keras.utils.plot_model(model, show_shapes=True)

OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=LR_ST)

model.compile(optimizer=OPTIMIZER,
loss='categorical_crossentropy',
metrics=['accuracy'],
run_eagerly=False)

def lr_decay(epoch):
if epoch < 10:
return LR_ST
else:
return LR_ST * tf.math.exp(0.2 * (10 - epoch))

lr_scheduler = keras.callbacks.LearningRateScheduler(lr_decay)


model_checkpoint = keras.callbacks.ModelCheckpoint(
filepath='mycnn_best',
monitor='val_accuracy',
save_weights_only=True,
save_best_only=True,
save_freq='epoch')

callbacks = [ lr_scheduler, model_checkpoint ]

print('X_train.shape = ',X_train.shape)

history = model.fit(X_train, Y_train epochs=50,
validation_data=X_test, shuffle=True, verbose=1,
callbacks=callbacks)

它现在给我错误:ValueError: Shapes (32, 2) and (32, 4) are incompatible。

我想对每个事件进行分类,每个事件都有 1、2、3 或 4 个集群,但在处理复杂的事情之前,我使用的事件我知道只有 1 个集群,所以每个事件的标签是 1 .

所有这些让我觉得问题出在我的输出是 4 个神经元上,但我真的不知道这是不是真的,我也不知道如何调试代码。

如果有人能帮助我,我将不胜感激。

最佳答案

问题来自标签的形状与模型的输出形状之间的差异。由于您使用的是 categorical_crossentropy 并且您的输出层有 4 个单元,因此您的模型需要一种热编码形式的标签和长度为 4 的向量。但是,您的标签是长度为 2 的向量。因此,如果你的标签是整数,你可以做

Y_train = tf.one_hot(Y_train, 4)

生成的形状将是 (5000, 4)

关于python - Keras ValueError : Shapes (32, 2) 和 (32, 4) 不兼容,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62643682/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com