gpt4 book ai didi

python - 将 ctypes 类型数组转换为 void 指针时出现 Numpy 错误

转载 作者:行者123 更新时间:2023-12-01 23:54:42 25 4
gpt4 key购买 nike

我想将字符串列表发送到 C 函数:

from ctypes import c_double, c_void_p, Structure, cast, c_char_p, c_size_t, POINTER
import numpy as np


class FFIArray(Structure):
"""
Convert sequence of structs or types to C-compatible void array

"""

_fields_ = [("data", c_void_p), ("len", c_size_t)]

@classmethod
def from_param(cls, seq):
""" Allow implicit conversions """
return seq if isinstance(seq, cls) else cls(seq)

def __init__(self, seq, data_type):
array = np.ctypeslib.as_array((data_type * len(seq))(*seq))
self._buffer = array.data
self.data = cast(array.ctypes.data_as(POINTER(data_type)), c_void_p)
self.len = len(array)


class Coordinates(Structure):

_fields_ = [("lat", c_double), ("lon", c_double)]

def __str__(self):
return "Latitude: {}, Longitude: {}".format(self.lat, self.lon)


if __name__ == "__main__":
tup = Coordinates(0.0, 1.0)
coords = [tup, tup]
a = b"foo"
b = b"bar"
words = [a, b]

coord_array = FFIArray(coords, data_type=Coordinates)
print(coord_array)
word_array = FFIArray(words, c_char_p)
print(word_array)

这适用于例如c_double,但当我使用 c_char_p 尝试时失败,并出现以下错误(在 Python 2.7.16 和 3.7.4 以及 NumPy 1.16.5、1.17.2 上测试) ):

Traceback (most recent call last):
File "/Users/sth/dev/test/venv3/lib/python3.7/site-packages/numpy/core/_internal.py", line 600, in _dtype_from_pep3118
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
File "/Users/sth/dev/test/venv3/lib/python3.7/site-packages/numpy/core/_internal.py", line 677, in __dtype_from_pep3118
raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
ValueError: Unknown PEP 3118 data type specifier 'z'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "so_example.py", line 42, in <module>
word_array = FFIArray(words, c_char_p)
File "so_example.py", line 19, in __init__
array = np.ctypeslib.as_array((data_type * len(seq))(*seq))
File "/Users/sth/dev/test/venv3/lib/python3.7/site-packages/numpy/ctypeslib.py", line 523, in as_array
return array(obj, copy=False)
ValueError: '<z' is not a valid PEP 3118 buffer format string

有更好的方法吗?我也不热衷于使用 numpy,尽管它对于将数字类型和 numpy 数组的可迭代转换为其他地方的 _FFIArray 很有用。

最佳答案

列表[Python.Docs]: ctypes - A foreign function library for Python .

我(还)没有深入了解NumPy的错误(到目前为止我已经找到了_multiarray_umath(C)来源,但我不知道 _internal.py 中的函数是如何被调用的)。

与此同时,这里有一个不使用NumPy的变体(在这种情况下不需要,但你提到你在其他部分使用它,所以这可能只修复了你的部分问题)。

code03.py:

#!/usr/bin/env python3

import sys
import ctypes
import numpy as np


class FFIArray(ctypes.Structure):
"""
Convert sequence of structs or types to C-compatible void array
"""

_fields_ = [
("data", ctypes.c_void_p),
("len", ctypes.c_size_t)
]

@classmethod
def from_param(cls, seq, data_type):
""" Allow implicit conversions """
return seq if isinstance(seq, cls) else cls(seq, data_type)

def __init__(self, seq, data_type):
self.len = len(seq)
self._data_type = data_type
self._DataTypeArr = self._data_type * self.len
self.data = ctypes.cast(self._DataTypeArr(*seq), ctypes.c_void_p)

def __str__(self):
ret = super().__str__() # Python 3
#ret = super(FFIArray, self).__str__() # !!! Python 2 !!!
ret += "\nType: {0:s}\nLength: {1:d}\nElement Type: {2:}\nElements:\n".format(
self.__class__.__name__, self.len, self._data_type)
arr_data = self._DataTypeArr.from_address(self.data)
for idx, item in enumerate(arr_data):
ret += " {0:d}: {1:}\n".format(idx, item)
return ret


class Coordinates(ctypes.Structure):
_fields_ = [
("lat", ctypes.c_double),
("lon", ctypes.c_double)
]

def __str__(self):
return "Latitude: {0:.3f}, Longitude: {1:.3f}".format(self.lat, self.lon)


def main():
coord_list = [Coordinates(i+ 1, i * 2) for i in range(4)]
s0 = b"foo"
s1 = b"bar"
word_list = [s0, s1]

coord_array = FFIArray(coord_list, data_type=Coordinates)
print(coord_array)
word_array = FFIArray(word_list, ctypes.c_char_p)
print(word_array)


if __name__ == "__main__":
print("Python {0:s} {1:d}bit on {2:s}\n".format(" ".join(item.strip() for item in sys.version.split("\n")), 64 if sys.maxsize > 0x100000000 else 32, sys.platform))
print("NumPy: {0:s}\n".format(np.version.version))
main()
print("\nDone.")

注释:

  • 修复了 FFIArray.from_param 中的错误(缺少 arg)
  • 初始化器中的 NumPy 用法非常尴尬:
    1. 从字节值创建一个CTypes数组
    2. 创建一个np数组(来自上一步结果)
    3. 创建一个CTypes指针(来自上一步结果)
  • 对原始代码进行了一些小的重构

输出:

[cfati@CFATI-5510-0:e:\Work\Dev\StackOverflow\q058049957]> "e:\Work\Dev\VEnvs\py_064_03.07.03_test0\Scripts\python.exe" code03.py
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] 64bit on win32

NumPy: 1.16.2

<__main__.FFIArray object at 0x0000019CFEB63648>
Type: FFIArray
Length: 4
Element Type: <class '__main__.Coordinates'>
Elements:
0: Latitude: 1.000, Longitude: 0.000
1: Latitude: 2.000, Longitude: 2.000
2: Latitude: 3.000, Longitude: 4.000
3: Latitude: 4.000, Longitude: 6.000

<__main__.FFIArray object at 0x0000019CFEB637C8>
Type: FFIArray
Length: 2
Element Type: <class 'ctypes.c_char_p'>
Elements:
0: b'foo'
1: b'bar'


Done.

<小时/>

更新#0

PEP 3118定义了访问(共享)内存的标准。其中一部分是用于在缓冲区内容和相关数据之间进行转换的格式字符串说明符。这些列于 [Python.Docs]: PEP 3118 - Additions to the struct string-syntax并扩展 [Python 3.Docs]: struct - Format Characters 中的那些。
ctypes 类型有一个 (!!!undocumented!!!) _type_ 属性,(我推测)在执行以下操作时使用该属性从/到 np 的转换:

>>> import ctypes
>>>
>>> data_types = list()
>>>
>>> for attr_name in dir(ctypes):
... attr = getattr(ctypes, attr_name, None)
... if isinstance(attr, (type,)) and issubclass(attr, (ctypes._SimpleCData,)):
... data_types.append((attr, attr_name))
...
>>> for data_type, data_type_name in data_types:
... print("{0:} ({1:}) - {2:}".format(data_type, data_type_name, getattr(data_type, "_type_", None)))
...
<class 'ctypes.HRESULT'> (HRESULT) - l
<class '_ctypes._SimpleCData'> (_SimpleCData) - None
<class 'ctypes.c_bool'> (c_bool) - ?
<class 'ctypes.c_byte'> (c_byte) - b
<class 'ctypes.c_char'> (c_char) - c
<class 'ctypes.c_char_p'> (c_char_p) - z
<class 'ctypes.c_double'> (c_double) - d
<class 'ctypes.c_float'> (c_float) - f
<class 'ctypes.c_long'> (c_int) - l
<class 'ctypes.c_short'> (c_int16) - h
<class 'ctypes.c_long'> (c_int32) - l
<class 'ctypes.c_longlong'> (c_int64) - q
<class 'ctypes.c_byte'> (c_int8) - b
<class 'ctypes.c_long'> (c_long) - l
<class 'ctypes.c_double'> (c_longdouble) - d
<class 'ctypes.c_longlong'> (c_longlong) - q
<class 'ctypes.c_short'> (c_short) - h
<class 'ctypes.c_ulonglong'> (c_size_t) - Q
<class 'ctypes.c_longlong'> (c_ssize_t) - q
<class 'ctypes.c_ubyte'> (c_ubyte) - B
<class 'ctypes.c_ulong'> (c_uint) - L
<class 'ctypes.c_ushort'> (c_uint16) - H
<class 'ctypes.c_ulong'> (c_uint32) - L
<class 'ctypes.c_ulonglong'> (c_uint64) - Q
<class 'ctypes.c_ubyte'> (c_uint8) - B
<class 'ctypes.c_ulong'> (c_ulong) - L
<class 'ctypes.c_ulonglong'> (c_ulonglong) - Q
<class 'ctypes.c_ushort'> (c_ushort) - H
<class 'ctypes.c_void_p'> (c_void_p) - P
<class 'ctypes.c_void_p'> (c_voidp) - P
<class 'ctypes.c_wchar'> (c_wchar) - u
<class 'ctypes.c_wchar_p'> (c_wchar_p) - Z
<class 'ctypes.py_object'> (py_object) - O

如上所示,c_char_pc_whar_p 未找到或不符合标准。乍一看,这似乎是一个 ctypes 错误,因为它不遵守标准,但我不会急于声明这一事实(并且可能会提交一个错误) )在进一步调查之前(特别是因为该领域已经报告了错误:[Python.Bugs]: ctypes arrays have incorrect buffer information (PEP-3118))。

下面是一个也处理 np 数组的变体。

code04.py:

#!/usr/bin/env python3

import sys
import ctypes
import numpy as np


class FFIArray(ctypes.Structure):
"""
Convert sequence of structs or types to C-compatible void array
"""

_fields_ = [
("data", ctypes.c_void_p),
("len", ctypes.c_size_t)
]

_special_np_types_mapping = {
ctypes.c_char_p: "S",
ctypes.c_wchar_p: "U",
}

@classmethod
def from_param(cls, seq, data_type=ctypes.c_void_p):
""" Allow implicit conversions """
return seq if isinstance(seq, cls) else cls(seq, data_type=data_type)

def __init__(self, seq, data_type=ctypes.c_void_p):
self.len = len(seq)
self.__data_type = data_type # Used just to hold the value passed to the initializer
if isinstance(seq, np.ndarray):
arr = np.ctypeslib.as_ctypes(seq)
self._data_type = arr._type_ # !!! data_type is ignored in this case !!!
self._DataTypeArr = arr.__class__
self.data = ctypes.cast(arr, ctypes.c_void_p)
else:
self._data_type = data_type
self._DataTypeArr = self._data_type * self.len
self.data = ctypes.cast(self._DataTypeArr(*seq), ctypes.c_void_p)

def __str__(self):
strings = [super().__str__()] # Python 3
#strings = [super(FFIArray, self).__str__()] # !!! Python 2 (ugly) !!!
strings.append("Type: {0:s}\nElement Type: {1:}{2:}\nElements ({3:d}):".format(
self.__class__.__name__, self._data_type,
"" if self._data_type == self.__data_type else " ({0:})".format(self.__data_type),
self.len))
arr_data = self._DataTypeArr.from_address(self.data)
for idx, item in enumerate(arr_data):
strings.append(" {0:d}: {1:}".format(idx, item))
return "\n".join(strings) + "\n"

def to_np(self):
arr_data = self._DataTypeArr.from_address(self.data)
if self._data_type in self._special_np_types_mapping:
dtype = np.dtype(self._special_np_types_mapping[self._data_type] + str(max(len(item) for item in arr_data)))
np_arr = np.empty(self.len, dtype=dtype)
for idx, item in enumerate(arr_data):
np_arr[idx] = item
return np_arr
else:
return np.ctypeslib.as_array(arr_data)


class Coordinates(ctypes.Structure):
_fields_ = [
("lat", ctypes.c_double),
("lon", ctypes.c_double)
]

def __str__(self):
return "Latitude: {0:.3f}, Longitude: {1:.3f}".format(self.lat, self.lon)


def main():
coord_list = [Coordinates(i + 1, i * 2) for i in range(4)]
s0 = b"foo"
s1 = b"bar (beyond all recognition)" # To avoid having 2 equal strings
word_list = [s0, s1]

coord_array0 = FFIArray(coord_list, data_type=Coordinates)
print(coord_array0)

word_array0 = FFIArray(word_list, data_type=ctypes.c_char_p)
print(word_array0)
print("to_np: {0:}\n".format(word_array0.to_np()))

np_array_src = np.array([0, -3.141593, 2.718282, -0.577, 0.618])
float_array0 = FFIArray.from_param(np_array_src, data_type=None)
print(float_array0)
np_array_dst = float_array0.to_np()
print("to_np: {0:}".format(np_array_dst))
print("Equal np arrays: {0:}\n".format(all(np_array_src == np_array_dst)))

empty_array0 = FFIArray.from_param([])
print(empty_array0)


if __name__ == "__main__":
print("Python {0:s} {1:d}bit on {2:s}\n".format(" ".join(item.strip() for item in sys.version.split("\n")), 64 if sys.maxsize > 0x100000000 else 32, sys.platform))
print("NumPy: {0:s}\n".format(np.version.version))
main()
print("\nDone.")

输出:

[cfati@CFATI-5510-0:e:\Work\Dev\StackOverflow\q058049957]> "e:\Work\Dev\VEnvs\py_064_03.07.03_test0\Scripts\python.exe" code04.py
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD64)] 64bit on win32

NumPy: 1.16.2

<__main__.FFIArray object at 0x000002484A2265C8>
Type: FFIArray
Element Type: <class '__main__.Coordinates'>
Elements (4):
0: Latitude: 1.000, Longitude: 0.000
1: Latitude: 2.000, Longitude: 2.000
2: Latitude: 3.000, Longitude: 4.000
3: Latitude: 4.000, Longitude: 6.000

<__main__.FFIArray object at 0x000002484A2267C8>
Type: FFIArray
Element Type: <class 'ctypes.c_char_p'>
Elements (2):
0: b'foo'
1: b'bar (beyond all recognition)'

to_np: [b'foo' b'bar (beyond all recognition)']

<__main__.FFIArray object at 0x000002484A2264C8>
Type: FFIArray
Element Type: <class 'ctypes.c_double'> (None)
Elements (5):
0: 0.0
1: -3.141593
2: 2.718282
3: -0.577
4: 0.618

to_np: [ 0. -3.141593 2.718282 -0.577 0.618 ]
Equal np arrays: True

<__main__.FFIArray object at 0x000002484A226848>
Type: FFIArray
Element Type: <class 'ctypes.c_void_p'>
Elements (0):


Done.

当然,这是可能性之一。另一种可能涉及(已弃用)[SciPy.Docs]: numpy.char.array用法,但我不想让事情变得过于复杂(没有明确的场景)。


<小时/>

更新#1

添加了 FFIArraynp 数组的转换(我不是 np 专家,所以对于专家来说这可能看起来很麻烦)。字符串需要特殊处理。
没有发布新的代码版本(因为更改不是很显着),而是在上一个版本上工作。

关于python - 将 ctypes 类型数组转换为 void 指针时出现 Numpy 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58049957/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com