- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图在 python 中找到数据框特定列的平均值,但最后我得到了一些非常奇怪的数字。谁可以给我解释一下这个?我想要 a、b、c 列的平均值
k = pd.DataFrame(np.array([[1, 0, 3,'kk'], [4, 5, 6,'kk'], [7, 20, 9,'k'],[3, 2, 9,'k']]),
columns=['a', 'b', 'c','type'])
k
返回
a b c type
0 1 0 3 kk
1 4 5 6 kk
2 7 20 9 k
3 3 2 9 k
我想要除“类型”列之外的每一列的平均值
k[['a','b','c']].mean()
这给了我
a 368.25
b 1300.50
c 924.75
dtype: float64
我很困惑!谁能给我解释一下?
最佳答案
这是创建具有混合数据类型的 numpy
数组的问题。每个子列表现在都有 Object
的数据类型,并且正在将其转换为数据框。
因此,现在 DataFrame 也将保存与数组中相同的数据类型。
请看下面的片段:
k = pd.DataFrame(np.array([[1, 0, 3,'kk'], [4, 5, 6,'kk'], [7, 20, 9,'k'],[3, 2, 9,'k']]),
columns=['a', 'b', 'c','type'])
print(k.dtypes)
a object
b object
c object
type object
dtype: object
但是您可以想一想,如何计算字符串对象的平均值。这又是 numpy 的力量。
例如,取a列:
当你应用 mean 时,它正在尝试下面的操作,
np.sum(数组)/len(数组)
print(np.sum(k["a"]))
'1473'
print(np.len(k["a"]))
4
print(np.mean(k["a"]))
368.25
现在,368.25 只不过是 1473/4
。
对于 b 列,它将是 05202/4 = 1300.5。
因此,当您创建 Dataframe 时,使用列表列表或字典形式创建,这将根据元素分配数据类型。
k = pd.DataFrame(([[1, 0, 3,'kk'], [4, 5, 6,'kk'], [7, 20, 9,'k'],[3, 2, 9,'k']]),
columns=['a', 'b', 'c','type'])
print(k.dtypes)
a int64
b int64
c int64
type object
dtype: object
print(k.mean())
a 3.75
b 6.75
c 6.75
dtype: float64
关于python - 计算 pandas 数据框中选定列的选定行的平均值,但最终得到一些奇怪的数字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64940903/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!