- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
给定从 rnorm
绘制和截断 c
我希望我的绘图使用以下颜色:
-c
左侧的部分为红色-c
和 c
之间的部分为蓝色c
例如,如果我的数据是:
set.seed(9782)
mydata <- rnorm(1000, 0, 2)
c <- 1
我想画这样的东西:
但是如果我的数据都在 c
的右边,整个图应该是绿色的。类似地,如果所有内容都在 -c
和 c
之间或在 -c
的左侧,则绘图应该全部为红色或蓝色。
这是我写的代码:
MinD <- min(mydata)
MaxD <- max(mydata)
df.plot <- data.frame(density = mydata)
if(c==0){
case <- dplyr::case_when((MinD < 0 & MaxD >0) ~ "L_and_R",
(MinD > 0) ~ "R",
(MaxD < 0) ~ "L")
}else{
case <- dplyr::case_when((MinD < -c & MaxD >c) ~ "ALL",
(MinD > -c & MaxD > c) ~ "Center_and_R",
(MinD > -c & MaxD <c) ~ "Center",
(MinD < -c & MaxD < c) ~ "Center_and_L",
MaxD < -c ~ "L",
MaxD > c ~ "R")
}
# Draw the Center
if(case %in% c("ALL", "Center_and_R", "Center", "Center_and_L")){
ds <- density(df.plot$density, from = -c, to = c)
ds_data_Center <- data.frame(x = ds$x, y = ds$y, section="Center")
} else{
ds_data_Center <- data.frame(x = NA, y = NA, section="Center")
}
# Draw L
if(case %in% c("ALL", "Center_and_L", "L", "L_and_R")){
ds <- density(df.plot$density, from = MinD, to = -c)
ds_data_L <- data.frame(x = ds$x, y = ds$y, section="L")
} else{
ds_data_L <- data.frame(x = NA, y = NA, section="L")
}
# Draw R
if(case %in% c("ALL", "Center_and_R", "R", "L_and_R")){
ds <- density(df.plot$density, from = c, to = MaxD)
ds_data_R <- data.frame(x = ds$x, y = ds$y, section="R")
} else{
ds_data_R <- data.frame(x = NA, y = NA, section="R")
}
L_Pr <- round(mean(mydata < -c),2)
Center_Pr <- round(mean((mydata>-c & mydata<c)),2)
R_Pr <- round(mean(mydata > c),2)
filldf <- data.frame(section = c("L", "Center", "R"),
Pr = c(L_Pr, Center_Pr, R_Pr),
fill = c("red", "blue", "green")) %>%
dplyr::mutate(section = as.character(section))
if(c==0){
ds_data <- suppressWarnings(dplyr::bind_rows(ds_data_L, ds_data_R)) %>%
dplyr::full_join(filldf, by = "section") %>% filter(Pr!=0) %>%
dplyr::full_join(filldf, by = "section") %>% mutate(section = ordered(section, levels=c("L","R")))
ds_data <- ds_data[order(ds_data$section), ] %>%
filter(Pr!=0) %>%
mutate(Pr=scales::percent(Pr))
}else{
ds_data <- suppressWarnings(dplyr::bind_rows(ds_data_Center, ds_data_L, ds_data_R)) %>%
dplyr::full_join(filldf, by = "section") %>% mutate(section = ordered(section, levels=c("L","Center","R")))
ds_data <- ds_data[order(ds_data$section), ] %>%
filter(Pr!=0) %>%
mutate(Pr=scales::percent(Pr))
}
fillScale <- scale_fill_manual(name = paste0("c = ", c, ":"),
values = as.character(unique(ds_data$fill)))
p <- ggplot(data = ds_data, aes(x=x, y=y, fill=Pr)) +
geom_area() + fillScale
唉,我不知道如何将颜色分配给不同的部分,同时将百分比作为颜色的标签。
最佳答案
我们使用 density
函数来创建我们实际绘制的数据框。然后,我们使用 cut
函数使用数据值的范围创建组。最后,我们计算每个组的概率质量并将其用作实际的图例标签。
我们还创建了一个带标签的颜色向量,以确保相同的颜色始终与给定的 x 值范围一致,无论数据是否包含给定的 x 值范围内的任何值。
下面的代码将所有这些打包成一个函数。
library(tidyverse)
library(gridExtra)
fill_density = function(x, cc=1, adj=1, drop_levs=FALSE) {
# Calculate density values for input data
dens = data.frame(density(x, n=2^10, adjust=adj)[c("x","y")]) %>%
mutate(section = cut(x, breaks=c(-Inf, -1, cc, Inf))) %>%
group_by(section) %>%
mutate(prob = paste0(round(sum(y)*mean(diff(x))*100),"%"))
# Get probability mass for each level of section
# We'll use these as the label values in scale_fill_manual
sp = dens %>%
group_by(section, prob) %>%
summarise %>%
ungroup
if(!drop_levs) {
sp = sp %>% complete(section, fill=list(prob="0%"))
}
# Assign colors to each level of section
col = setNames(c("red","blue","green"), levels(dens$section))
ggplot(dens, aes(x, y, fill=section)) +
geom_area() +
scale_fill_manual(labels=sp$prob, values=col, drop=drop_levs) +
labs(fill="")
}
现在让我们在几个不同的数据分布上运行该函数:
set.seed(3)
dat2 = rnorm(1000)
grid.arrange(fill_density(mydata), fill_density(mydata[mydata>0]),
fill_density(mydata[mydata>2], drop_levs=TRUE),
fill_density(mydata[mydata>2], drop_levs=FALSE),
fill_density(mydata[mydata < -5 | mydata > 5], adj=0.3), fill_density(dat2),
ncol=2)
关于r - 使用 ggplot 固定填充密度图的不同部分,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46516759/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!