gpt4 book ai didi

python - 将 Tensor 转换为 SparseTensor 以实现 ctc_loss

转载 作者:行者123 更新时间:2023-12-01 23:31:33 25 4
gpt4 key购买 nike

有没有办法将稠密张量转换为稀疏张量?显然,Tensorflow 的 Estimator.fit 不接受 SparseTensors 作为标签。我想将 SparseTensors 传递到 Tensorflow 的 Estimator.fit 中的原因之一是能够使用tensorflow ctc_loss。代码如下:

import dataset_utils
import tensorflow as tf
import numpy as np

from tensorflow.contrib import grid_rnn, learn, layers, framework

def grid_rnn_fn(features, labels, mode):
input_layer = tf.reshape(features["x"], [-1, 48, 1596])
indices = tf.where(tf.not_equal(labels, tf.constant(0, dtype=tf.int32)))
values = tf.gather_nd(labels, indices)
sparse_labels = tf.SparseTensor(indices, values, dense_shape=tf.shape(labels, out_type=tf.int64))

cell_fw = grid_rnn.Grid2LSTMCell(num_units=128)
cell_bw = grid_rnn.Grid2LSTMCell(num_units=128)
bidirectional_grid_rnn = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, input_layer, dtype=tf.float32)
outputs = tf.reshape(bidirectional_grid_rnn[0], [-1, 256])

W = tf.Variable(tf.truncated_normal([256,
80],
stddev=0.1, dtype=tf.float32), name='W')
b = tf.Variable(tf.constant(0., dtype=tf.float32, shape=[80], name='b'))

logits = tf.matmul(outputs, W) + b
logits = tf.reshape(logits, [tf.shape(input_layer)[0], -1, 80])
logits = tf.transpose(logits, (1, 0, 2))

loss = None
train_op = None

if mode != learn.ModeKeys.INFER:
#Error occurs here
loss = tf.nn.ctc_loss(inputs=logits, labels=sparse_labels, sequence_length=320)

... # returning ModelFnOps

def main(_):
image_paths, labels = dataset_utils.read_dataset_list('../test/dummy_labels_file.txt')
data_dir = "../test/dummy_data/"
images = dataset_utils.read_images(data_dir=data_dir, image_paths=image_paths, image_extension='png')
print('Done reading images')
images = dataset_utils.resize(images, (1596, 48))
images = dataset_utils.transpose(images)
labels = dataset_utils.encode(labels)
x_train, x_test, y_train, y_test = dataset_utils.split(features=images, test_size=0.5, labels=labels)

train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(x_train)},
y=np.array(y_train),
num_epochs=1,
shuffle=True,
batch_size=1
)

classifier = learn.Estimator(model_fn=grid_rnn_fn, model_dir="/tmp/grid_rnn_ocr_model")
classifier.fit(input_fn=train_input_fn)

更新:

事实证明,这个解决方案来自 here将稠密张量转换为稀疏张量:

indices = tf.where(tf.not_equal(labels, tf.constant(0, dtype=tf.int32)))
values = tf.gather_nd(labels, indices)
sparse_labels = tf.SparseTensor(indices, values, dense_shape=tf.shape(labels, out_type=tf.int64))

但是,我现在遇到了 ctc_loss 引发的错误:

ValueError: Shape must be rank 1 but is rank 0 for 'CTCLoss' (op: 'CTCLoss') with input shapes: [?,?,80], [?,2], [?], [].

我有这段代码可以将密集标签转换为稀疏标签:

def convert_to_sparse(labels, dtype=np.int32):
indices = []
values = []

for n, seq in enumerate(labels):
indices.extend(zip([n] * len(seq), range(len(seq))))
values.extend(seq)

indices = np.asarray(indices, dtype=dtype)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(labels), np.asarray(indices).max(0)[1] + 1], dtype=dtype)

return indices, values, shape

我转换了y_train稀疏标签,并将值放在 SparseTensor 中:

sparse_y_train = convert_to_sparse(y_train)
print(tf.SparseTensor(
indices=sparse_y_train[0],
values=sparse_y_train[1],
dense_shape=sparse_y_train
))

并将其与 SparseTensor 进行比较在 grid_rnn_fn 内创建:

indices = tf.where(tf.not_equal(labels, tf.constant(0, dtype=tf.int32)))
values = tf.gather_nd(labels, indices)
sparse_labels = tf.SparseTensor(indices, values, dense_shape=tf.shape(labels, out_type=tf.int64))

这是我得到的:

对于sparse_y_train :

SparseTensor(indices=Tensor("SparseTensor/indices:0", shape=(33, 2), dtype=int64), values=Tensor("SparseTensor/values:0", shape=(33,), dtype=int32), dense_shape=Tensor("SparseTensor/dense_shape:0", shape=(2,), dtype=int64))

对于sparse_labels :

SparseTensor(indices=Tensor("Where:0", shape=(?, 2), dtype=int64), values=Tensor("GatherNd:0", shape=(?,), dtype=int32), dense_shape=Tensor("Shape:0", shape=(2,), dtype=int64))

这让我认为 ctc_loss 似乎无法处理 SparseTensors作为具有动态形状的标签。

最佳答案

是的。可以将张量转换为稀疏张量并返回:

sparse为稀疏张量,dense为稠密张量。

从稀疏到密集:

 dense = tf.sparse_to_dense(sparse.indices, sparse.shape, sparse.values)

从密集到稀疏:

zero = tf.constant(0, dtype=tf.float32)
where = tf.not_equal(dense, zero)
indices = tf.where(where)
values = tf.gather_nd(dense, indices)
sparse = tf.SparseTensor(indices, values, dense.shape)

关于python - 将 Tensor 转换为 SparseTensor 以实现 ctc_loss,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48201725/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com