- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我目前正在对这个字典文件进行扁平化处理,遇到了一些障碍。我正在尝试使用 json_normalize
来展平这些数据。如果我对单个实例进行测试,它可以工作,但如果我想展平所有数据,它将返回一个错误,指出 key error '0'
我不确定如何解决这个问题。
数据示例-
data = {1:{
'Name': "Thrilling Tales of Dragon Slayers",
'IDs':{
"StoreID": ['123445452543'],
"BookID": ['543533254353'],
"SalesID": ['543267765345']},
2:{
'Name': "boring Tales of Dragon Slayers",
'IDs':{
"StoreID": ['111111', '1121111'],
"BookID": ['543533254353', '4324232342'],
"SalesID": ['543267765345', '4353543']}}
我的代码
d_flat = pd.io.json.json_normalize(data, meta=['Title', 'StoreID', 'BookID', 'SalesID'])
最佳答案
您的数据结构不便。我想关注:
'IDs'
中的列表放入字典列表中,这样会方便得多。您的数据
:
{1: {'Name': 'Thrilling Tales of Dragon Slayers',
'IDs': {'StoreID': ['123445452543'],
'BookID': ['543533254353'],
'SalesID': ['543267765345']}},
2: {'Name': 'boring Tales of Dragon Slayers',
'IDs': {'StoreID': ['111111', '1121111'],
'BookID': ['543533254353', '4324232342'],
'SalesID': ['543267765345', '4353543']}}}
我希望它看起来像什么:
[{'Name': 'Thrilling Tales of Dragon Slayers',
'IDs': [{'StoreID': '123445452543',
'BookID': '543533254353',
'SalesID': '543267765345'}]},
{'Name': 'boring Tales of Dragon Slayers',
'IDs': [{'StoreID': '111111',
'BookID': '543533254353',
'SalesID': '543267765345'},
{'StoreID': '1121111',
'BookID': '4324232342',
'SalesID': '4353543'}]}]
简单的循环,不要乱来。这让我们得到了我上面展示的内容
new = []
for v in data.values():
temp = {**v} # This is intended to keep all the other data that might be there
ids = temp.pop('IDs') # I have to focus on this to create the records
temp['IDs'] = [dict(zip(ids, x)) for x in zip(*ids.values())]
new.append(temp)
new = [{**v, 'IDs': [dict(zip(v['IDs'], x)) for x in zip(*v['IDs'].values())]} for v in data.values()]
pd.json_normalize
创建DataFrame
在调用 json_normalize
时,我们需要指定记录的路径,即在 'IDs'
键中找到的 id 字典列表。 json_normalize
将为该列表中的每个项目在数据框中创建一行。这将通过 record_path
参数完成,我们传递一个 tuple
来描述路径(如果它在更深的结构中)或一个字符串(如果键在顶层,对我们来说就是顶层)。
record_path = 'IDs'
然后我们要告诉 json_normalize
哪些键是记录的元数据。如果像我们一样有多个记录,那么元数据将为每条记录重复。
meta = 'Name'
所以最终的解决方案是这样的:
pd.json_normalize(new, record_path='IDs', meta='Name')
StoreID BookID SalesID Name
0 123445452543 543533254353 543267765345 Thrilling Tales of Dragon Slayers
1 111111 543533254353 543267765345 boring Tales of Dragon Slayers
2 1121111 4324232342 4353543 boring Tales of Dragon Slayers
如果我们无论如何都要重组,不妨进行重组,这样我们就可以将其传递给数据框构造函数。
pd.DataFrame([
{'Name': r['Name'], **dict(zip(r['IDs'], x))}
for r in data.values() for x in zip(*r['IDs'].values())
])
Name StoreID BookID SalesID
0 Thrilling Tales of Dragon Slayers 123445452543 543533254353 543267765345
1 boring Tales of Dragon Slayers 111111 543533254353 543267765345
2 boring Tales of Dragon Slayers 1121111 4324232342 4353543
当我们在做的时候。关于每个 id 类型是否具有相同数量的 id,数据是不明确的。假设他们没有。
data = {1:{
'Name': "Thrilling Tales of Dragon Slayers",
'IDs':{
"StoreID": ['123445452543'],
"BookID": ['543533254353'],
"SalesID": ['543267765345']}},
2:{
'Name': "boring Tales of Dragon Slayers",
'IDs':{
"StoreID": ['111111', '1121111'],
"BookID": ['543533254353', '4324232342'],
"SalesID": ['543267765345', '4353543', 'extra id']}}}
然后我们可以使用 itertools
中的 zip_longest
from itertools import zip_longest
pd.DataFrame([
{'Name': r['Name'], **dict(zip(r['IDs'], x))}
for r in data.values() for x in zip_longest(*r['IDs'].values())
])
Name StoreID BookID SalesID
0 Thrilling Tales of Dragon Slayers 123445452543 543533254353 543267765345
1 boring Tales of Dragon Slayers 111111 543533254353 543267765345
2 boring Tales of Dragon Slayers 1121111 4324232342 4353543
3 boring Tales of Dragon Slayers None None extra id
关于python - 使用 pd.json_normalize 展平字典,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66464851/
我只想国家和资本化的值(value)。 这是我的完整代码: cities = { 'rotterdam': { 'country': 'netherlands',
想更好地了解如何比较对象类型的键。 dicOverall.exists(dic2) 返回 False,而 dicOverall.exists(dic1) 返回 True。我不太确定 .Exists 如
我是编程和 python 的新手,我不知道如何解决这个问题。 my_dict = {'tiger': ['claws', 'sharp teeth', 'four legs', 'stripes'
这个问题已经有答案了: Accessing an object property with a dynamically-computed name (19 个回答) 已关闭 8 年前。 我引用了这篇文
希望有人能帮忙。我正在使用 Python,我希望能够执行以下操作。 我有一组对象(例如形状)和一系列作用于这些对象的命令。命令的格式为命令字符串,后跟可变数量的参数,可以是字符串或整数 例如形状“矩形
我在文件中保存了一本字典。我从 python 交互式 shell 将字典加载到内存中,我的系统监视器显示 python 进程消耗了 4GB。以下命令提供以下输出: size1 = sys.getsiz
如果我运行以下代码: import json foo = [ { "name": "Bob", "occupation": "", "stand
我尝试获取列名及其索引,并将结果保存为数据框或字典: df <- data.frame(a=rnorm(10), b=rnorm(10), c=rnorm(10)) 我该怎么做?谢谢。 column
我正在尝试获取输入,如果字典 logins 有一个与我的输入匹配的键,我想返回该键的值。 logins = { 'admin':'admin', 'turtle':'password1
在 Perl 世界中有一个很棒的东西叫做 CPAN .它是开源 Perl 库的大型存储。 我使用来自 CPAN 的模块,我已经发布了 several distributions myself . 我使
这个问题已经有答案了: Is there a Python dict without values? (3 个回答) 已关闭 3 年前。 我有一个问题,我想跟踪大量值。如果我从未遇到过该值,我将执行操
想知道这是否可能。 我们有一个第 3 方库,其中包含有关用户的识别信息... 与库的主要交互是通过一个以字符串为键的 HashTable,并返回该键的信息对象图。 问题是, key 显然是区分大小写的
我是 .NET 编程的新手。对不起,如果这个问题以前被问过。 我目前正在学习 F#。 Dictionary、Hashtable 和 Map 之间有什么区别?我应该什么时候使用? 我还有一个标题中没有提
我正在尝试使用SVM进行3类分类。为此,我正在SVM培训期间准备词汇表。但是,由于我在SVM预测期间获得随机结果,因此我怀疑我的词汇创建方法中存在一些问题。我创建词汇的代码如下: //Mat trai
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
假设我有一个以下形式的嵌套字典: {'geo': {'bgcolor': 'white','lakecolor': 'white','caxis': {'gridcolor': 'white', 'l
我有一个 java 应用程序,每秒启动和停止数亿个项目(从外部脚本调用)多次。 Input: String key Output: int value 此应用程序的目的是在从未永远改变的Map(约30
我正在尝试找出字典与集合和数组相比的相对优势和功能。 我发现了一篇很棒的文章here但找不到一个简单的表格来比较所有不同的功能。 有人知道吗? 最佳答案 请参阅下表,对集合和字典进行有用的比较。 (该
我想要一个字典,它可以为字典中没有的任何键返回一个指定的值,例如: var dict = new DictWithDefValues("not specified"); dict.Add("bob78
我是 python 新手,目前仍在学习如何处理列表和字典。 我有这两个功能 def food_database(item_name, size_serv, calorie_serv, prot
我是一名优秀的程序员,十分优秀!