- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 lme4
运行混合模型在 R:
full_mod3=lmer(logcptplus1 ~ logdepth*logcobb + (1|fyear) + (1 |flocation),
data=cpt, REML=TRUE)
Formula: logcptplus1 ~ logdepth * logcobb + (1 | fyear) + (1 | flocation)
Data: cpt
REML criterion at convergence: 577.5
Scaled residuals:
Min 1Q Median 3Q Max
-2.7797 -0.5431 0.0248 0.6562 2.1733
Random effects:
Groups Name Variance Std.Dev.
fyear (Intercept) 0.2254 0.4748
flocation (Intercept) 0.1557 0.3946
Residual 0.9663 0.9830
Number of obs: 193, groups: fyear, 16; flocation, 16
Fixed effects:
Estimate Std. Error t value
(Intercept) 4.3949 1.2319 3.568
logdepth 0.2681 0.4293 0.625
logcobb -0.7189 0.5955 -1.207
logdepth:logcobb 0.3791 0.2071 1.831
effects
R 中的包和函数来计算模型输出的 95% 置信区间。我已经使用
effects
计算并提取了 95% CI 和标准误。包,以便我可以通过将次要预测变量 (
logdepth
) 保持在数据集中的中位数 (2.5) 不变来检查重要预测变量与响应变量之间的关系:
gm=4.3949 + 0.2681*depth_median + -0.7189*logcobb_range + 0.3791*
(depth_median*logcobb_range)
ef2=effect("logdepth*logcobb",full_mod3,
xlevels=list(logcobb=seq(log(0.03268),log(0.37980),,200)))
confint()
中指定代码,以便我可以计算可视化自举结果所需的 CI,如上图所示?
confint(full_mod3,method="boot",nsim=200,boot.type="perc")
最佳答案
您可以通过指定自定义函数来执行此操作:
library(lme4)
?confint.merMod
FUN: bootstrap function; if ‘NULL’, an internal function that returns the fixed-effect parameters as well as the random-effect parameters on the standard deviation/correlation scale will be used. See ‘bootMer’ for details.
FUN
可以是使用
?predict.merMod
的预测函数 (
newdata
)改变并修复适当的预测变量的参数。
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
pframe <- data.frame(Days=seq(0,20,by=0.5))
## predicted values at population level (re.form=NA)
pfun <- function(fit) {
predict(fit,newdata=pframe,re.form=NA)
}
set.seed(101)
cc <- confint(fm1,method="boot",FUN=pfun)
par(las=1,bty="l")
matplot(pframe$Days,cc,lty=2,col=1,type="l",
xlab="Days",ylab="Reaction")
关于r - 用交互项引导 lmer,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43080958/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!