gpt4 book ai didi

c - 运行后未随机化的数字

转载 作者:行者123 更新时间:2023-12-01 23:00:33 25 4
gpt4 key购买 nike

我正在尝试创建一个 openMP 程序,它随机化双数组并通过公式运行值:y[i] = (a[i] * b[i]) + c[i] + ( d[i] * e[i]) + (f[i]/2);

如果我多次运行该程序,我意识到 Y[] 值是相同的,即使在第一个 #pragma omp for 中初始化数组时它们应该是随机的.关于为什么会发生这种情况的任何想法?

#include<stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include<omp.h>
#define ARRAY_SIZE 10

double randfrom(double min, double max);

double randfrom(double min, double max)
{
double range = (max - min);
double div = RAND_MAX / range;
return min + (rand() / div);
}

int main() {
int i;
double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE], d[ARRAY_SIZE], e[ARRAY_SIZE], f[ARRAY_SIZE], y[ARRAY_SIZE];
double min, max;
int imin, imax;







/*A[10] consists of random number in between 1 and 100
B[10] consists of random number in between 10 and 50
C[10] consists of random number in between 1 and 10
D[10] consists of random number in between 1 and 50
E[10] consists of random number in between 1 and 5
F[10] consists of random number in between 10 and 80*/

srand(time(NULL));

#pragma omp parallel

{

#pragma omp parallel for
for (i = 0; i < ARRAY_SIZE; i++) {
a[i] = randfrom(1, 100);
b[i] = randfrom(10, 50);
c[i] = randfrom(1, 50);
d[i] = randfrom(1, 50);
e[i] = randfrom(1, 5);
f[i] = randfrom(10, 80);
}
}




printf("This is the parallel Print\n\n\n");

#pragma omp parallel shared(a,b,c,d,e,f,y) private(i)
{
//Y=(A*B)+C+(D*E)+(F/2)
#pragma omp for schedule(dynamic) nowait
for (i = 0; i < ARRAY_SIZE; i++) {
/*printf("A[%d]%.2f",i, a[i]);
printf("\n\n");
printf("B[%d]%.2f", i, b[i]);
printf("\n\n");
printf("C[%d]%.2f", i, c[i]);
printf("\n\n");
printf("D[%d]%.2f", i, d[i]);
printf("\n\n");
printf("E[%d]%.2f", i, e[i]);
printf("\n\n");
printf("F[%d]%.2f", i, f[i]);
printf("\n\n");*/
y[i] = (a[i] * b[i]) + c[i] + (d[i] * e[i]) + (f[i] / 2);
printf("Y[%d]=%.2f\n", i, y[i]);
}
}




#pragma omp parallel shared(y, min,imin,max,imax) private(i)
{
//min
#pragma omp for schedule(dynamic) nowait
for (i = 0; i < ARRAY_SIZE; i++) {
if (i == 0) {
min = y[i];
imin = i;
}
else {
if (y[i] < min) {
min = y[i];
imin = i;
}
}
}

//max
#pragma omp for schedule(dynamic) nowait
for (i = 0; i < ARRAY_SIZE; i++) {
if (i == 0) {
max = y[i];
imax = i;
}
else {
if (y[i] > max) {
max = y[i];
imax = i;
}
}
}
}
printf("min y[%d] = %.2f\nmax y[%d] = %.2f\n", imin, min, imax, max);
return 0;
}

最佳答案

  1. 首先,我想强调的是,OpenMP 的开销很大,因此您需要在代码中进行合理的工作量,否则开销会大于并行化带来的 yield 。在您的代码中就是这种情况,因此最快的解决方案是使用串行代码。但是,您提到您的目标是学习 OpenMP,所以我将向您展示如何学习。

  2. 在你的previous post's评论@paleonix 链接了一个帖子(How to generate random numbers in parallel?),它回答了你关于随机数的问题。解决方案之一是使用 rand_r .

  3. 在搜索数组 Y 的最小值和最大值时,您的代码存在数据竞争.如果您只需要找到最小值/最大值,那将非常容易,因为您可以像这样使用缩减:

double max=y[0];
#pragma omp parallel for default(none) shared(y) reduction(max:max)
for (int i = 1; i < ARRAY_SIZE; i++) {
if (y[i] > max) {
max = y[i];
}
}

但在您的情况下,您还需要最小值和最大值的索引,因此它有点复杂。您必须使用临界区以确保其他线程无法更改 max , min , imaximin更新它们的值时的值。因此,可以通过以下方式完成(例如寻找最小值):

 #pragma omp parallel for
for (int i = 0; i < ARRAY_SIZE; i++) {
if (y[i] < min) {
#pragma omp critical
if (y[i] < min) {
min = y[i];
imin = i;
}
}
}

请注意 if (y[i] < min)出现两次,因为在第一次比较之后其他线程可能会更改 min 的值, 所以在更新之前在临界区内 minimin值你必须再次检查它。在寻找最大值的情况下,您可以完全按照相同的方式进行操作。

  1. 始终在所需的最小范围内使用变量。

  2. 同样推荐使用default(none)因此,您必须明确定义所有变量的共享属性。

  3. 您可以填充数组并在单个循环中找到它的最小值/最大值,然后在不同的串行循环中打印它们的值。

  4. 如果你设置minmax在循环之前,你可以去掉额外的比较 if (i == 0)在循环内使用。

综合:

double threadsafe_rand(unsigned int* seed, double min, double max)
{
double range = (max - min);
double div = RAND_MAX / range;
return min + (rand_r(seed) / div);
}

主要内容:

double min=DBL_MAX;
double max=-DBL_MAX;

#pragma omp parallel default(none) shared(a,b,c,d,e,f,y,imin,imax,min,max)
{
unsigned int seed=omp_get_thread_num();
#pragma omp for
for (int i = 0; i < ARRAY_SIZE; i++) {
a[i] = threadsafe_rand(&seed, 1,100);
b[i] = threadsafe_rand(&seed,10, 50);
c[i] = threadsafe_rand(&seed,1, 10);
d[i] = threadsafe_rand(&seed,1, 50);
e[i] = threadsafe_rand(&seed,1, 5);
f[i] = threadsafe_rand(&seed,10, 80);
y[i] = (a[i] * b[i]) + c[i] + (d[i] * e[i]) + (f[i] / 2);

if (y[i] < min) {
#pragma omp critical
if (y[i] < min) {
min = y[i];
imin = i;
}
}

if (y[i] > max) {
#pragma omp critical
if (y[i] > max) {
max = y[i];
imax = i;
}
}
}
}

// printout
for (int i = 0; i < ARRAY_SIZE; i++) {
printf("Y[%d]=%.2f\n", i, y[i]);
}
printf("min y[%d] = %.2f\nmax y[%d] = %.2f\n", imin, min, imax, max);

更新:我已经根据@Qubit 和@JérômeRichard 的建议更新了代码:

  1. 我使用了“真正最小 PCG32 代码”/(c) 2014 M.E. O'Neill/来自 https://www.pcg-random.org/download.html .请注意,我不打算正确处理这个简单的随机数生成器的种子设定。如果您想这样做,请使用完整的随机数生成器库。

  2. 我已更改代码以使用用户定义的缩减。确实,它使代码更加高效,但对初学者来说并不友好。这需要一篇很长的文章来解释它,所以如果你对细节感兴趣,请阅读一本关于 OpenMP 的书。

  3. 我减少了 threadsafe_rand 中的划分数量

更新后的代码:

#include<stdio.h>
#include<stdint.h>
#include<time.h>
#include<float.h>
#include<limits.h>
#include<omp.h>
#define ARRAY_SIZE 10

// *Really* minimal PCG32 code / (c) 2014 M.E. O'Neill / pcg-random.org
// Licensed under Apache License 2.0 (NO WARRANTY, etc. see website)

typedef struct { uint64_t state; uint64_t inc; } pcg32_random_t;

inline uint32_t pcg32_random_r(pcg32_random_t* rng)
{
uint64_t oldstate = rng->state;
// Advance internal state
rng->state = oldstate * 6364136223846793005ULL + (rng->inc|1);
// Calculate output function (XSH RR), uses old state for max ILP
uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
uint32_t rot = oldstate >> 59u;
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}

inline double threadsafe_rand(pcg32_random_t* seed, double min, double max)
{
const double tmp=1.0/UINT32_MAX;
return min + tmp*(max - min)*pcg32_random_r(seed);
}

struct v{
double value;
int i;
};

#pragma omp declare reduction(custom_min: struct v: \
omp_out = omp_in.value < omp_out.value ? omp_in : omp_out )\
initializer(omp_priv={DBL_MAX,0} )

#pragma omp declare reduction(custom_max: struct v: \
omp_out = omp_in.value > omp_out.value ? omp_in : omp_out )\
initializer(omp_priv={-DBL_MAX,0} )

int main() {
double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE], d[ARRAY_SIZE], e[ARRAY_SIZE], f[ARRAY_SIZE], y[ARRAY_SIZE];
struct v max={-DBL_MAX,0};
struct v min={DBL_MAX,0};

#pragma omp parallel default(none) shared(a,b,c,d,e,f,y) reduction(custom_min:min) reduction(custom_max:max)
{
pcg32_random_t seed={omp_get_thread_num()*7842 + time(NULL)%2299, 1234+omp_get_thread_num()};
#pragma omp for
for (int i=0 ; i < ARRAY_SIZE; i++) {
a[i] = threadsafe_rand(&seed, 1,100);
b[i] = threadsafe_rand(&seed,10, 50);
c[i] = threadsafe_rand(&seed,1, 10);
d[i] = threadsafe_rand(&seed,1, 50);
e[i] = threadsafe_rand(&seed,1, 5);
f[i] = threadsafe_rand(&seed,10, 80);
y[i] = (a[i] * b[i]) + c[i] + (d[i] * e[i]) + (f[i] / 2);

if (y[i] < min.value) {
min.value = y[i];
min.i = i;
}

if (y[i] > max.value) {
max.value = y[i];
max.i = i;
}
}
}

// printout
for (int i = 0; i < ARRAY_SIZE; i++) {
printf("Y[%d]=%.2f\n", i, y[i]);
}
printf("min y[%d] = %.2f\nmax y[%d] = %.2f\n", min.i, min.value, max.i, max.value);
return 0;
}

关于c - 运行后未随机化的数字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/71880075/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com