- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试根据预先存在的列的条件逻辑创建一个新列。我知道可能有更有效的方法来实现这一目标,但我有一些需要包括在内的条件。这只是第一步。
总体范围是创建从 1
和 2
映射的两个新列。这些引用了 Object
列,因为每个时间点可以有多行。
Object2
和 Value
确定如何映射新列。因此,如果 Value is == X
,我想匹配两个 Object
列以返回相应的 1
和 2
此时指向一个新列。如果Value is == Y
,则应发生相同的过程。如果 Value is == Z
,我想插入 0, 0
。其他一切都应该是 NaN
df = pd.DataFrame({
'Time' : ['2019-08-02 09:50:10.1','2019-08-02 09:50:10.1','2019-08-02 09:50:10.2','2019-08-02 09:50:10.3','2019-08-02 09:50:10.3','2019-08-02 09:50:10.4','2019-08-02 09:50:10.5','2019-08-02 09:50:10.6','2019-08-02 09:50:10.6'],
'Object' : ['B','A','A','A','C','C','C','B','B'],
'1' : [1,3,5,7,9,11,13,15,17],
'2' : [0,1,4,6,8,10,12,14,16],
'Object2' : ['A','A',np.nan,'C','C','C','C','B','A'],
'Value' : ['X','X',np.nan,'Y','Y','Y','Y','Z',np.nan],
})
def map_12(df):
for i in df['Value']:
if i == 'X':
df['A1'] = df['1']
df['A2'] = df['2']
elif i == 'Y':
df['A1'] = df['1']
df['A2'] = df['2']
elif i == 'Z':
df['A1'] = 0
df['A2'] = 0
else:
df['A1'] = np.nan
df['A2'] = np.nan
return df
预期输出:
Time Object 1 2 Object2 Value A1 A2
0 2019-08-02 09:50:10.1 A 1 0 A X 1.0 0.0 # Match A-A at this time point, so output is 1,0
1 2019-08-02 09:50:10.1 B 3 1 A X 1.0 0.0 # Still at same time point so use 1,0
2 2019-08-02 09:50:10.2 A 5 4 NaN NaN NaN NaN # No Value so NaN
3 2019-08-02 09:50:10.3 C 7 6 C Y 7.0 6.0 # Match C-C at this time point, so output is 7,6
4 2019-08-02 09:50:10.3 A 9 8 C Y 7.0 6.0 # Still at same time point so use 7,6
5 2019-08-02 09:50:10.4 C 11 10 C Y 11.0 10.0 # Match C-C at this time point, so output is 11,10
6 2019-08-02 09:50:10.5 C 13 12 C Y 13.0 12.0 # Match C-C at this time point, so output is 13,12
7 2019-08-02 09:50:10.6 B 15 14 B Z 0.0 0.0 # Z so 0,0
8 2019-08-02 09:50:10.6 B 17 16 A NaN NaN NaN # No Value so NaN
新样本 df:
df = pd.DataFrame({
'Time' : ['2019-08-02 09:50:10.1','2019-08-02 09:50:10.1','2019-08-02 09:50:10.2','2019-08-02 09:50:10.3','2019-08-02 09:50:10.3','2019-08-02 09:50:10.4','2019-08-02 09:50:10.5','2019-08-02 09:50:10.6','2019-08-02 09:50:10.6'],
'Object' : ['B','A','A','A','C','C','C','B','B'],
'1' : [1,3,5,7,9,11,13,15,17],
'2' : [0,1,4,6,8,10,12,14,16],
'Object2' : ['A','A',np.nan,'C','C','C','C','B','A'],
'Value' : ['X','X',np.nan,'Y','Y','Y','Y','Z',np.nan],
})
预期输出:
Time Object 1 2 Object2 Value A1 A2
0 2019-08-02 09:50:10.1 B 1 0 A X 3.0 1.0 # Match A-A at this time point, so output is 3,1
1 2019-08-02 09:50:10.1 A 3 1 A X 3.0 1.0 # Still at same time point so use 3,1
2 2019-08-02 09:50:10.2 A 5 4 NaN NaN NaN NaN # No Value so NaN
3 2019-08-02 09:50:10.3 A 7 6 C Y 9.0 8.0 # Match C-C at this time point, so output is 9,8
4 2019-08-02 09:50:10.3 C 9 8 C Y 9.0 8.0 # Still at same time point so use 9,8
5 2019-08-02 09:50:10.4 C 11 10 C Y 11.0 10.0 # Match C-C at this time point, so output is 11,10
6 2019-08-02 09:50:10.5 C 13 12 C Y 13.0 12.0 # Match C-C at this time point, so output is 13,12
7 2019-08-02 09:50:10.6 B 15 14 B Z 0.0 0.0 # Z so 0,0
8 2019-08-02 09:50:10.6 B 17 16 A NaN NaN NaN # No Value so NaN
最佳答案
使用DataFrame.where
+ DataFrame.eq
创建类似于 df[['1','2']] 的 DataFrame但仅限匹配为 True
的行,其余为 NaN
的行。然后使用 DataFrame.groupby
按时间点分组并用Object
和Object2
(matches==True
)重合的现有值填充每组缺失的数据。使用DataFrame.where
丢弃 df['Value']
为 NaN
的值。最后,当 Z< 时使用 [
DataFrame.mask
] 设置 0/code> 位于 Value
列中 #matches
matches=df.Object.eq(df.Object2)
#Creating conditions
condition_z=df['Value']=='Z'
not_null=df['Value'].notnull()
#Creating DataFrame to fill
df12=( df[['1','2']].where(matches)
.groupby(df['Time'],sort=False)
.apply(lambda x: x.ffill().bfill()) )
#fill 0 on Value is Z and discarting NaN
df[['A1','A2']] =df12.where(not_null).mask(condition_z,0)
print(df)
输出
Time Object 1 2 Object2 Value A1 A2
0 2019-08-02 09:50:10.1 B 1 0 A X 3.0 1.0
1 2019-08-02 09:50:10.1 A 3 1 A X 3.0 1.0
2 2019-08-02 09:50:10.2 A 5 4 NaN NaN NaN NaN
3 2019-08-02 09:50:10.3 A 7 6 C Y 9.0 8.0
4 2019-08-02 09:50:10.3 C 9 8 C Y 9.0 8.0
5 2019-08-02 09:50:10.4 C 11 10 C Y 11.0 10.0
6 2019-08-02 09:50:10.5 C 13 12 C Y 13.0 12.0
7 2019-08-02 09:50:10.6 B 15 14 B Z 0.0 0.0
8 2019-08-02 09:50:10.6 B 17 16 A NaN NaN NaN
<小时/>我们还可以使用GroupBy.transform
:
#matches
matches=df.Object.eq(df.Object2)
#Creating conditions
condition_z=df['Value']=='Z'
not_null=df['Value'].notnull()
#Creating DataFrame to fill
df12=( df[['1','2']].where(matches)
.groupby(df['Time'],sort=False)
.transform('first') )
#fill 0 on Value is Z and discarting NaN
df[['A1','A2']] =df12.where(not_null).mask(condition_z,0)
print(df)
关于python - 有条件生成新列-Pandas,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58687448/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!