- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是一个关于我的家庭作业的问题,特别是关于 NASM 的。
我正在编写一种算法来查找数字的最小整数因子。 (大于 1)
用伪代码可以概括为:
if(n%2==0)
return 2;
for(i=3; i <= n/2; i+=2)
if(n%i==0)
return i;
return n;
该程序仅比大数的要求稍慢。 ( n
> 1 000 000 000)
(对我而言)最明显的改进是替换 n/2
与 sqrt(n)
.但是,我不应该知道如何使用 float ,并且通过牛顿法找到整数 sqrt 似乎有点矫枉过正。 (因为我实际上不需要知道确切的值,虽然我没有测试过它,但我想递归/迭代地找到 isqrt 会很慢)
所以我想知道,是否有一些函数的快速算法,例如 sqrt(n) < f(n) < n/2
.我所说的“快”是指最好是常数时间,而 f(n) < n/2
我的意思是大 n
明显更少.
我正在考虑的一些选项是:
检查 i <= min(sqrt(2^32), n/2)
, 其中sqrt(2^32) = 2^16
是常数。
替换i <= n/2
与 i <= (2^p)
, 其中p = ⌈log_2(n)/2⌉
或者其他的东西。 ( p
是 n
最高有效位的一半)
最佳答案
有一个寻找平方根的迭代过程:
def approximate_sqrt(number, depth, start_val):
for i in range(depth):
start_val=(start_val+number/start_val)/2
return start_val
初始猜测(start_val
)越好,它收敛到合理解的速度就越快。
If start_val>sqrt(number)
then every iterative value>sqrt(number)
因此它提供了一个上限(类似于 start_val < sqrt(number)
)。如果您的初始猜测非常接近,您可以将迭代深度减少到 1 或 2。因此,为了迭代地猜测素数候选的上限,例如你可以调用
sqrt_appr=approximate_sqrt(i, 1, sqrt_appr+1)
对于下一个素数候选者,先前估计为 sqrt_appr
的平方根并获得误差约为 10E-6
的上限.(虽然每次我检查近似值的接近程度时,我都会设置 sqrt_appr=sqrt(number)+1
来重置过程。)
关于nasm - 快速整数 sqrt 上限近似,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42732225/
所以我必须用以下方法来近似 Pi:4*(1-1/3+1/5-1/7+1/9-...)。它也应该基于迭代次数。所以函数应该是这样的: >>> piApprox(1) 4.0 >>> piApprox(1
输入:图 G 输出:多个独立集,使得一个节点对所有独立集的成员资格是唯一的。因此,节点与它自己的集合中的任何节点都没有连接。这是一个示例路径。 由于这里需要澄清,因此再次改写: 将给定的图划分为多个集
我已经使用查找表和低阶多项式近似实现了定点 log2 函数,但对整个 32 位定点范围 [-1,+1) 的准确度不太满意。输入格式为 s0.31,输出格式为 s15.16。 我在这里发布这个问题,以便
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
我的目标是近似二项式变量总和的分布。我使用以下纸张The Distribution of a Sum of Binomial Random Variables作者:肯·巴特勒和迈克尔·斯蒂芬斯。 我想
我知道有方法 approximate cubic Bezier curves ( this page 也是一个很好的引用),但是有没有更快的方法来逼近 N 次贝塞尔曲线?还是只能使用下面的概括? 来自
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它有助于我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注意
我是 C++ 和编码本身的初学者,所以请原谅任何词汇错误。我找不到这个具体问题,但在互联网上找到了类似的问题,但我仍然很难获得我需要的结果。 所以我使用莱布尼茨公式来近似 pi,即: pi = 4 ·
有多种方法可以通过显示名称查找联系人。例如这个答案Android - Find a contact by display name 但是我需要找到模糊匹配的联系人。例如如果找不到“Kim”,我需要返回
我一直在尝试使用以下代码使用级数表示来近似 e 以获得尽可能多的精度数字,但无论我计算多少项,精度数字的数量似乎都保持不变。即: 2.718281984329223632812500000000000
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
我做了很多随机的数学程序来帮助我完成作业(合成除法是最有趣的),现在我想反转一个激进的表达式。 例如,在我方便的 TI 计算器中我得到 .2360679775 好吧,我想将该数字转换为等效的无理数表达
我可以通过 CPU 分析器看到,compute_variances() 是我项目的瓶颈。 % cumulative self self total
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的可扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它
这是迄今为止我的代码, from math import * def main(): sides = eval(input("Enter the number of sides:"))
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它,
我是一名优秀的程序员,十分优秀!