- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试有效地将精确的肽(26 个字符字母表 A-Z1 中的氨基酸短序列)映射到蛋白质(同一字母表的较长序列)。据我所知,最有效的方法是使用 Aho-Corasick
trie(其中肽是关键字)。不幸的是,我在 R 中找不到适用于非核苷酸字母表的 AC 版本(Biostrings 的 PDict
和 Starr 的 match_ac
都是 DNA 硬编码) .
作为拐杖,我一直在尝试并行化基本的 grep 方法。但我很难找到一种方法来做到这一点而不产生大量的 IO 开销。这是一个简短的示例:
peptides = c("FSSSGGGGGGGR","GAHLQGGAK","GGSGGSYGGGGSGGGYGGGSGSR","IISNASCTTNCLAPLAK")
if (!exists("proteins"))
{
biocLite("biomaRt", ask=F, suppressUpdates=T, suppressAutoUpdate=T)
library(biomaRt)
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
proteins = getBM(attributes=c('peptide', 'refseq_peptide'), filters='refseq_peptide', values=c("NP_000217", "NP_001276675"), mart=ensembl)
row.names(proteins) = proteins$refseq_peptide
}
library(snowfall)
library(Biostrings)
library(plyr)
sfInit(parallel=T, cpus=detectCores()-1)
allPeptideInstances = NULL
i=1
increment=100
count=nrow(proteins)
while(T)
{
print(paste(i, min(count, i+increment), sep=":"))
text_source = proteins[i:min(count, i+increment),]
text = text_source$peptide
#peptideInstances = sapply(peptides, regexpr, text, fixed=T, useBytes=T)
peptideInstances = sfSapply(peptides, regexpr, text, fixed=T, useBytes=T)
dimnames(peptideInstances) = list(text_source$refseq_peptide, colnames(peptideInstances))
sparsePeptideInstances = alply(peptideInstances, 2, .fun = function(x) {x[x > 0]}, .dims = T)
allPeptideInstances = c(allPeptideInstances, sparsePeptideInstances, recursive=T)
if (i==count | nrow(text_source) < increment)
break
i = i+increment
}
sfStop()
这里有几个问题:
peptideInstances
这里是一个稠密矩阵,所以从每个 worker 那里返回它是非常冗长的。我已经把它拆散了分成 block ,这样我就不会处理 40,000(蛋白质)x 60,000(肽)矩阵。或者,如果有人知道 R 中有更好的解决方案,我很乐意使用它。我已经在这方面花费了足够的时间,实现 Aho-Corasick 可能会得到更好的服务。
1 其中一些是歧义代码,但为了简单起见,请忽略它们。
最佳答案
我学习了 Rcpp 并自己实现了 Aho-Corasick。现在CRAN有一个很好的通用多关键字搜索package .
以下是一些使用示例:
listEquals = function(a, b) { is.null(unlist(a)) && is.null(unlist(b)) || !is.null(a) && !is.null(b) && all(unlist(a) == unlist(b)) }
# simple search of multiple keywords in a single text
keywords = c("Abra", "cadabra", "is", "the", "Magic", "Word")
oneSearch = AhoCorasickSearch(keywords, "Is Abracadabra the Magic Word?")
stopifnot(listEquals(oneSearch[[1]][[1]], list(keyword="Abra", offset=4)))
stopifnot(listEquals(oneSearch[[1]][[2]], list(keyword="cadabra", offset=8)))
stopifnot(listEquals(oneSearch[[1]][[3]], list(keyword="the", offset=16)))
stopifnot(listEquals(oneSearch[[1]][[4]], list(keyword="Magic", offset=20)))
stopifnot(listEquals(oneSearch[[1]][[5]], list(keyword="Word", offset=26)))
# search a list of lists
# * sublists are accessed by index
# * texts are accessed by index
# * non-matched texts are kept (to preserve index order)
listSearch = AhoCorasickSearchList(keywords, list(c("What in", "the world"), c("is"), "secret about", "the Magic Word?"))
stopifnot(listEquals(listSearch[[1]][[1]], list()))
stopifnot(listEquals(listSearch[[1]][[2]][[1]], list(keyword="the", offset=1)))
stopifnot(listEquals(listSearch[[2]][[1]][[1]], list(keyword="is", offset=1)))
stopifnot(listEquals(listSearch[[3]], list()))
stopifnot(listEquals(listSearch[[4]][[1]][[1]], list(keyword="the", offset=1)))
stopifnot(listEquals(listSearch[[4]][[1]][[2]], list(keyword="Magic", offset=5)))
stopifnot(listEquals(listSearch[[4]][[1]][[3]], list(keyword="Word", offset=11)))
# named search of a list of lists
# * sublists are accessed by name
# * matched texts are accessed by name
# * non-matched texts are dropped
namedSearch = AhoCorasickSearchList(keywords, list(subject=c(phrase1="What in", phrase2="the world"),
verb=c(phrase1="is"),
predicate1=c(phrase1="secret about"),
predicate2=c(phrase1="the Magic Word?")))
stopifnot(listEquals(namedSearch$subject$phrase2[[1]], list(keyword="the", offset=1)))
stopifnot(listEquals(namedSearch$verb$phrase1[[1]], list(keyword="is", offset=1)))
stopifnot(listEquals(namedSearch$predicate1, list()))
stopifnot(listEquals(namedSearch$predicate2$phrase1[[1]], list(keyword="the", offset=1)))
stopifnot(listEquals(namedSearch$predicate2$phrase1[[2]], list(keyword="Magic", offset=5)))
stopifnot(listEquals(namedSearch$predicate2$phrase1[[3]], list(keyword="Word", offset=11)))
# named search of multiple texts in a single list with keyword grouping and aminoacid alphabet
# * all matches to a keyword are accessed by name
# * non-matched keywords are dropped
proteins = c(protein1="PEPTIDEPEPTIDEDADADARARARARAKEKEKEKEPEPTIDE",
protein2="DERPADERPAPEWPEWPEEPEERAWRAWWARRAGTAGPEPTIDEKESEQUENCE")
peptides = c("PEPTIDE", "DERPA", "SEQUENCE", "KEKE", "PEPPIE")
peptideSearch = AhoCorasickSearch(peptides, proteins, alphabet="aminoacid", groupByKeyword=T)
stopifnot(listEquals(peptideSearch$PEPTIDE, list(list(keyword="protein1", offset=1),
list(keyword="protein1", offset=8),
list(keyword="protein1", offset=37),
list(keyword="protein2", offset=38))))
stopifnot(listEquals(peptideSearch$DERPA, list(list(keyword="protein2", offset=1),
list(keyword="protein2", offset=6))))
stopifnot(listEquals(peptideSearch$SEQUENCE, list(list(keyword="protein2", offset=47))))
stopifnot(listEquals(peptideSearch$KEKE, list(list(keyword="protein1", offset=29),
list(keyword="protein1", offset=31),
list(keyword="protein1", offset=33))))
stopifnot(listEquals(peptideSearch$PEPPIE, NULL))
# grouping by keyword without text names: offsets are given without reference to the text
names(proteins) = NULL
peptideSearch = AhoCorasickSearch(peptides, proteins, groupByKeyword=T)
stopifnot(listEquals(peptideSearch$PEPTIDE, list(1, 8, 37, 38)))
stopifnot(listEquals(peptideSearch$DERPA, list(1, 6)))
stopifnot(listEquals(peptideSearch$SEQUENCE, list(47)))
stopifnot(listEquals(peptideSearch$KEKE, list(29, 31, 33)))
关于r - 在 R 中有效地将多个字符串/关键字与多个文本匹配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38403653/
我收到未知数据,我想以编程方式查看相关性,并将所有完全相关的变量组合在一起(忽略方向)。在下面的数据集中,我可以手动查看相关性并说 a, f, g, h一起去吧b, d, e .我怎样才能以编程方
这个问题在这里已经有了答案: use dplyr's summarise_each to return one row per function? (3 个答案) 关闭 4 年前。 作为探索性工作的
我想要完成的是使用数组存储未知大小的多项式。我在互联网上看到的是使用一个数组,每个单元格都包含系数,度数是单元格编号,但这不是有效的,因为如果我们有一个多项式,如:6x^14+x+5。这意味着我们将从
嘿伙计们,我一直在尝试解析 HTML 文件以从中抓取文本,但时不时地,我会得到一些非常奇怪的字符,例如 à€œ。我确定是“智能引号”或弯头标点符号导致了我的所有问题,因此我的临时修复是搜索所有这些字符
我原来的 data.table 由三列组成。 site、observation_number 和 id。 例如以下是 id = z 的所有观察结果 |site|observation_number|i
"Premature optimisation is the root of all evil (but it's nice to have once you have an ugly solutio
给定这个数组 X: [1 2 3 2 3 1 4 5 7 1] 和行长度数组R: [3 2 5] 表示转换后每行的长度。 我正在寻找一个计算效率高的函数来将 X reshape 为数组 Y: [[ 1
我有一些 data.frame s: # Sample data a <- data.frame(c(1:10), c(11:20)) names(a) <- c("A", "B") b <- dat
我有点困惑。列表擅长任意位置插入,但不善于随机访问? (怎么可能)如果你不能随机访问,你怎么知道在哪里插入? 同样,如果你可以在任何位置插入,为什么你不能从那个位置高效地读取? 最佳答案 如果您已经有
我有一个向量,我想计算它的移动平均值(使用宽度为 5 的窗口)。 例如,如果有问题的向量是[1,2,3,4,5,6,7,8],那么 结果向量的第一个条目应该是 [1,2,3,4,5] 中所有条目的总和
有一个随机整数生成器,它生成随机整数并在后台运行。需求设计一个API,调用时返回当时的簇数。 簇:簇是连续整数的字典顺序。例如,在这种情况下,10,7,1,2,8,5,9 簇是 3 (1,2--5--
我想做的是将一组 (n) 项分成大小相等的组(大小为 m 的组,并且为简单起见,假设没有剩余,即 n 可以被 m 整除)。这样做多次,我想确保同一组中的任何项目都不会出现两次。 为了使这稍微更具体一些
假设我有一些包含类型排列的模板表达式,在本例中它们来自 Abstract Syntax Tree : template
我已经在这方面工作了几天,似乎没有我需要的答案。 由于担心这个被标记为重复,我将解释为什么其他问题对我不起作用。 使用 DIFFLIB for Python 的任何答案都无助于我的需求。 (我在下面描
我正在使用 NumPy 数组。 我有一个 2N 长度向量 D,并希望将其一部分 reshape 为 N x N 数组 C. 现在这段代码可以满足我的要求,但对于较大的 N 来说是一个瓶颈: ``` i
我有一个问题: 让我们考虑这样的 pandas 数据框: Width Height Bitmap 67 56 59 71 61 73 ...
我目前正在用 C 语言编写一个解析器,设计它时我需要的东西之一是一个可变字符串“类”(一组对表示实例的不透明结构进行操作的函数),我将其称为 my_string。 string 类的实例只不过是包装
假设我在 --pandas-- 数据框中有以下列: x 1 589 2 354 3 692 4 474 5 739 6 731 7 259 8 723
我有一个成员函数,它接受另一个对象的常量引用参数。我想 const_cast 这个参数以便在成员函数中轻松使用它。为此,以下哪个代码更好?: void AClass::AMember(const BC
我们目前正在将 Guava 用于其不可变集合,但我惊讶地发现他们的 map 没有方法可以轻松创建只需稍作修改的新 map 。最重要的是,他们的构建器不允许为键分配新值或删除键。 因此,如果我只想修改一
我是一名优秀的程序员,十分优秀!