gpt4 book ai didi

python - 使用新的观察数据更新 PyMC3 上的模型

转载 作者:行者123 更新时间:2023-12-01 22:02:47 25 4
gpt4 key购买 nike

我去年测量了 80 个水果的直径,在检查了值的最佳分布后,我创建了一个 PyMC3 模型

with Model() as diam_model:
mu = Normal('mu',mu=57,sd=5.42)
sigma = Uniform('sigma',0,10)

之后,据我所知,我已经用我之前的数据(80 个值)“训练”了模型

with diam_model:
dist = Normal('dist',mu=mu,sd=sigma, observed=prior_data.values)

with diam_model:
samples=fit().sample(1000)

然后我使用了samplesplot_posterior,还返回了均值和 HPD。

我的想法是今年再次测量使用贝叶斯更新来减少样本量。如何添加单个值并更新后验,期望 HPD 越来越小?

最佳答案

核密度估计更新先验

使用建议重复的另一个答案,可以使用 this Jupyter notebook 中的代码提取先验的近似版本。 .

第一轮

我假设我们有来自第一轮抽样的数据,我们可以对其施加平均值 57.0 和标准差 5.42。

import numpy as np
import pymc3 as pm
from sklearn.preprocessing import scale
from scipy import stats

# generate data forced to match distribution indicated
Y0 = 57.0 + scale(np.random.normal(size=80))*5.42

with pm.Model() as m0:
# let's place an informed, but broad prior on the mean
mu = pm.Normal('mu', mu=50, sd=10)
sigma = pm.Uniform('sigma', 0, 10)

y = pm.Normal('y', mu=mu, sd=sigma, observed=Y0)

trace0 = pm.sample(5000, tune=5000)

从后验中提取新的先验

然后我们可以使用此模型的结果通过以下代码从参数中提取 KDE 后验概率 the referenced notebook :

def from_posterior(param, samples, k=100):
smin, smax = np.min(samples), np.max(samples)
width = smax - smin
x = np.linspace(smin, smax, k)
y = stats.gaussian_kde(samples)(x)

# what was never sampled should have a small probability but not 0,
# so we'll extend the domain and use linear approximation of density on it
x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]])
y = np.concatenate([[0], y, [0]])
return pm.Interpolated(param, x, y)

第二轮

现在,如果我们有更多数据,我们可以使用 KDE 更新先验运行新模型:

Y1 = np.random.normal(loc=57, scale=5.42, size=100)

with pm.Model() as m1:
mu = from_posterior('mu', trace0['mu'])
sigma = from_posterior('sigma', trace0['sigma'])

y = pm.Normal('y', mu=mu, sd=sigma, observed=Y1)

trace1 = pm.sample(5000, tune=5000)

同样,可以使用此轨迹为 future 几轮传入数据提取更新的后验估计。

买者自负

上述方法产生了真实更新先验的近似值,并且在共轭先验不可能的情况下最有用。还应该注意的是,我不确定这种基于 KDE 的近似值引入误差的程度以及它们在重复使用时如何在模型中传播。这是一个巧妙的技巧,但在没有进一步验证其稳健性的情况下将其投入生产时应该谨慎。

特别是,我会非常关注后验分布具有强相关结构的情况。此处提供的代码仅使用每个潜在变量的边缘生成一个“先验”分布。这对于像这样的简单模型来说似乎很好,而且不可否认,初始先验也缺乏相关性,所以这在这里可能不是一个大问题。然而,一般来说,对边缘进行汇总涉及丢弃有关变量如何相关的信息,而在其他情况下,这可能相当重要。例如,Beta 分布的默认参数化总是导致后验相关参数,因此上述技术是不合适的。相反,我们需要推断一个包含所有潜在变量的多维 KDE。


共轭模型

但是,在您的特定情况下,预期分布是高斯分布,并且这些分布具有 established closed-form conjugate models ,即有原则的解决方案而不是近似值。我强烈建议完成 Kevin Murphy's Conjugate Bayesian analysis of the Gaussian distribution .

正态-逆 Gamma 模型

正态-逆 Gamma 模型估计观察到的正态随机变量的均值和方差。均值是用正常先验建模的;具有反 Gamma 的方差。该模型使用四个参数作为先验:

mu_0  = prior mean
nu = number of observations used to estimate the mean
alpha = half the number of obs used to estimate variance
beta = half the sum of squared deviations

根据您的初始模型,我们可以使用这些值

mu_0  = 57.0
nu = 80
alpha = 40
beta = alpha*5.42**2

然后您可以绘制先验的对数似然,如下所示:

# points to compute likelihood at
mu_grid, sd_grid = np.meshgrid(np.linspace(47, 67, 101),
np.linspace(4, 8, 101))

# normal ~ N(X | mu_0, sigma/sqrt(nu))
logN = stats.norm.logpdf(x=mu_grid, loc=mu_0, scale=sd_grid/np.sqrt(nu))

# inv-gamma ~ IG(sigma^2 | alpha, beta)
logIG = stats.invgamma.logpdf(x=sd_grid**2, a=alpha, scale=beta)

# full log-likelihood
logNIG = logN + logIG

# actually, we'll plot the -log(-log(likelihood)) to get nicer contour
plt.figure(figsize=(8,8))
plt.contourf(mu_grid, sd_grid, -np.log(-logNIG))
plt.xlabel("$\mu$")
plt.ylabel("$\sigma$")
plt.show()

enter image description here

更新参数

给定新数据Y1,更新参数如下:

# precompute some helpful values
n = Y1.shape[0]
mu_y = Y1.mean()

# updated NIG parameters
mu_n = (nu*mu_0 + n*mu_y)/(nu + n)
nu_n = nu + n
alpha_n = alpha + n/2
beta_n = beta + 0.5*np.square(Y1 - mu_y).sum() + 0.5*(n*nu/nu_n)*(mu_y - mu_0)**2

为了说明模型的变化,让我们从稍微不同的分布中生成一些数据,然后绘制生成的后验对数似然:

np.random.seed(53211277)
Y1 = np.random.normal(loc=62, scale=7.0, size=20)

产生

enter image description here

在这里,20 个观测值不足以完全移动到我提供的新位置和比例,但两个参数似乎都朝那个方向移动。

关于python - 使用新的观察数据更新 PyMC3 上的模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53211277/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com