- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下图中,Matlab中使用spap2函数来平滑噪声数据。结果非常好。 Eigen 库支持此功能 Splines 。我正在寻找 Eigen 中的示例以获得类似的结果。对于 Matlab,我使用了 spap2(4, 4, time,noisyY);
数据以这种格式提供时间嘈杂数据
1.766 6.61202
1.767 11.4159
1.768 8.29416
1.769 8.29416
1.77 8.29416
1.771 6.02606
1.772 4.37819
1.773 4.37819
1.774 4.37819
1.775 3.18094
1.776 2.31109
1.777 1.67911
1.778 1.21994
1.779 0.886339
1.78 0.643963
1.781 0.467867
1.782 0.339925
1.783 0.24697
1.784 0.179434
1.785 7.03822
1.786 12.0214
1.787 8.73406
1.788 6.34567
1.789 4.6104
1.79 4.6104
1.791 4.6104
1.792 10.2071
1.793 14.2732
1.794 10.3701
1.795 7.53429
1.796 5.47398
1.797 3.97708
1.798 2.88952
1.799 2.09936
1.8 8.18047
1.801 12.5985
1.802 9.15338
1.803 6.65032
1.804 11.4743
1.805 14.9787
1.806 14.9787
1.807 14.9787
1.808 14.9787
1.809 10.8827
1.81 7.90674
1.811 5.74458
1.812 5.74458
1.813 4.17368
1.814 3.03236
1.815 2.20314
1.816 2.20314
1.817 8.27015
1.818 12.678
1.819 9.2111
1.82 9.2111
1.821 6.69225
1.822 4.86221
1.823 3.5326
1.824 2.56658
1.825 1.86473
1.826 1.35481
1.827 0.984325
1.828 0.715154
1.829 0.51959
1.83 0.377504
1.831 0.274273
1.832 0.199271
1.833 0.144779
1.834 0.105188
1.835 0.0764235
1.836 0.0555249
1.837 0.0403412
1.838 0.0293096
1.839 0.0212947
1.84 0.0212947
1.841 0.0212947
1.842 0.0154715
1.843 0.0112407
1.844 0.00816684
1.845 0.00593356
1.846 0.00431098
1.847 0.00313211
1.848 0.00227561
1.849 0.00165333
1.85 0.00120121
1.851 0.000872733
1.852 0.000634078
1.853 0.000460684
1.854 0.000334707
1.855 0.000334707
1.856 0.000334707
1.857 0.000334707
1.858 0.000334707
1.859 0.000243179
1.86 0.000243179
1.861 0.000243179
1.862 0.00017668
1.863 0.000128365
1.864 9.32629e-005
1.865 9.32629e-005
1.866 9.32629e-005
1.867 9.32629e-005
1.868 6.77594e-005
1.869 4.92301e-005
1.87 3.57678e-005
1.871 2.59868e-005
1.872 1.88805e-005
1.873 1.37175e-005
1.874 9.96635e-006
1.875 7.24098e-006
1.876 5.26088e-006
1.877 3.82225e-006
1.878 3.82225e-006
1.879 3.82225e-006
1.88 2.77703e-006
1.881 2.01763e-006
1.882 1.46589e-006
1.883 1.06503e-006
1.884 6.60526
1.885 11.4043
1.886 8.28568
1.887 6.0199
1.888 4.37371
1.889 3.17769
1.89 3.17769
1.891 3.17769
1.892 2.30873
1.893 1.67739
1.894 1.21869
1.895 0.885433
1.896 7.27548
1.897 11.9181
1.898 8.65899
1.899 6.29112
1.9 11.2017
1.901 14.7692
1.902 10.7305
1.903 7.79614
1.904 6.77613
1.905 6.03755
1.906 6.03289
1.907 6.03289
1.908 4.38315
1.909 3.18455
1.91 3.18455
1.911 9.51471
1.912 14.1156
1.913 10.2556
1.914 7.45113
1.915 7.45113
1.916 7.45113
1.917 5.41357
1.918 3.93319
1.919 2.85763
1.92 2.07619
1.921 8.9437
1.922 13.9338
1.923 13.9338
1.924 13.9338
1.925 10.1235
1.926 7.35515
1.927 11.9508
1.928 15.2911
1.929 11.1096
1.93 8.07161
1.931 5.86437
1.932 4.26071
1.933 4.22711
1.934 4.20402
1.935 3.0544
1.936 2.21915
1.937 1.61231
1.938 1.17141
1.939 0.851079
1.94 0.618345
1.941 0.449254
1.942 0.326402
1.943 0.237145
1.944 0.172296
1.945 0.12518
1.946 0.0909488
1.947 0.0660782
1.948 1.10487
1.949 1.85961
1.95 1.35108
1.951 0.981619
1.952 0.713188
1.953 0.518162
1.954 0.518162
1.955 0.518162
1.956 0.376466
1.957 0.376466
1.958 0.376466
1.959 0.273519
1.96 0.273519
1.961 0.198723
1.962 0.198723
1.963 0.144381
1.964 0.144381
1.965 0.104899
1.966 0.0762134
1.967 0.0553723
1.968 0.0402303
1.969 0.029229
1.97 0.029229
1.971 0.0212361
1.972 0.015429
1.973 0.015429
1.974 0.015429
1.975 1.16617
1.976 2.00223
1.977 1.4547
1.978 1.0569
1.979 0.767886
1.98 0.557902
1.981 0.405339
1.982 6.92392
1.983 11.6607
1.984 8.472
1.985 6.15527
1.986 4.47207
1.987 3.24915
1.988 2.36064
1.989 1.71511
1.99 1.2461
1.991 0.905344
1.992 0.657771
1.993 0.477898
1.994 0.347213
1.995 0.252265
1.996 0.183281
1.997 0.133162
1.998 0.0967477
1.999 0.0702913
2 0.0510696
2.001 6.71936
2.002 11.5642
2.003 8.40185
2.004 6.1043
2.005 4.43504
2.006 3.22224
2.007 3.22224
2.008 3.22224
2.009 2.3411
2.01 1.70091
2.011 1.23578
2.012 1.23578
2.013 0.897847
2.014 0.652324
2.015 0.473941
2.016 0.344338
2.017 6.28219
2.018 9.6646
2.019 6.08633
2.02 4.42198
2.021 3.21276
2.022 2.3342
2.023 2.33601
2.024 2.33471
2.025 1.69626
2.026 1.23241
2.027 0.895397
2.028 0.650544
2.029 0.472648
2.03 0.343399
2.031 0.249494
2.032 0.181268
2.033 0.131699
2.034 6.63352
2.035 11.3573
2.036 8.25156
2.037 7.12148
2.038 6.30308
2.039 4.57946
2.04 4.57946
2.041 10.0969
2.042 10.0969
2.043 14.1081
2.044 10.2501
2.045 7.44714
2.046 4.52751
2.047 2.40446
2.048 1.74694
2.049 7.73084
2.05 13.1854
2.051 10.6942
2.052 7.76983
2.053 12.0593
2.054 12.0593
2.055 15.1777
2.056 11.0272
2.057 9.03106
2.058 7.58411
2.059 12.1218
2.06 12.1218
2.061 15.4222
2.062 15.4273
2.063 11.2086
2.064 14.753
2.065 17.3291
2.066 12.5903
2.067 10.2519
2.068 8.55693
2.069 6.21698
2.07 11.1335
2.071 14.7082
2.072 10.6861
2.073 10.6852
2.074 10.6852
2.075 7.76327
2.076 12.2467
2.077 15.5046
2.078 17.8479
2.079 19.5501
2.08 14.204
2.081 16.9469
2.082 25.5109
2.083 25.1054
2.084 24.8705
2.085 24.6988
2.086 24.8916
2.087 25.0307
2.088 25.1688
2.089 25.1703
2.09 25.1703
2.091 32.1727
2.092 31.3272
2.093 30.4857
2.094 28.8139
2.095 27.5487
2.096 33.2503
2.097 33.2504
2.098 30.778
2.099 29.6056
最佳答案
你的一个公理是不正确的。 Eigen (un) 支持样条插值,这与 approximating 使用样条的函数不同。在前者中,样条曲线必须穿过数据点,而在近似中则不然,如 spap2
中。使用以下示例,您可以检查输出以验证 spline(times(i))
和 sins(i)
是否给出相同的结果。
int main()
{
int size = 300;
Eigen::RowVectorXd times(size), sins(size);
times << 0, 0.0200668896321070, 0.0401337792642141, 0.0602006688963211, 0.0802675585284281, 0.100334448160535, 0.120401337792642, 0.140468227424749, 0.160535117056856, 0.180602006688963, 0.200668896321070, 0.220735785953177, 0.240802675585284, 0.260869565217391, 0.280936454849498, 0.301003344481605, 0.321070234113712, 0.341137123745819, 0.361204013377926, 0.381270903010033, 0.401337792642141, 0.421404682274248, 0.441471571906355, 0.461538461538462, 0.481605351170569, 0.501672240802676, 0.521739130434783, 0.541806020066890, 0.561872909698997, 0.581939799331104, 0.602006688963211, 0.622073578595318, 0.642140468227425, 0.662207357859532, 0.682274247491639, 0.702341137123746, 0.722408026755853, 0.742474916387960, 0.762541806020067, 0.782608695652174, 0.802675585284281, 0.822742474916388, 0.842809364548495, 0.862876254180602, 0.882943143812709, 0.903010033444816, 0.923076923076923, 0.943143812709030, 0.963210702341137, 0.983277591973244, 1.00334448160535, 1.02341137123746, 1.04347826086957, 1.06354515050167, 1.08361204013378, 1.10367892976589, 1.12374581939799, 1.14381270903010, 1.16387959866221, 1.18394648829431, 1.20401337792642, 1.22408026755853, 1.24414715719064, 1.26421404682274, 1.28428093645485, 1.30434782608696, 1.32441471571906, 1.34448160535117, 1.36454849498328, 1.38461538461538, 1.40468227424749, 1.42474916387960, 1.44481605351171, 1.46488294314381, 1.48494983277592, 1.50501672240803, 1.52508361204013, 1.54515050167224, 1.56521739130435, 1.58528428093646, 1.60535117056856, 1.62541806020067, 1.64548494983278, 1.66555183946488, 1.68561872909699, 1.70568561872910, 1.72575250836120, 1.74581939799331, 1.76588628762542, 1.78595317725753, 1.80602006688963, 1.82608695652174, 1.84615384615385, 1.86622073578595, 1.88628762541806, 1.90635451505017, 1.92642140468227, 1.94648829431438, 1.96655518394649, 1.98662207357860, 2.00668896321070, 2.02675585284281, 2.04682274247492, 2.06688963210702, 2.08695652173913, 2.10702341137124, 2.12709030100334, 2.14715719063545, 2.16722408026756, 2.18729096989967, 2.20735785953177, 2.22742474916388, 2.24749163879599, 2.26755852842809, 2.28762541806020, 2.30769230769231, 2.32775919732441, 2.34782608695652, 2.36789297658863, 2.38795986622074, 2.40802675585284, 2.42809364548495, 2.44816053511706, 2.46822742474916, 2.48829431438127, 2.50836120401338, 2.52842809364549, 2.54849498327759, 2.56856187290970, 2.58862876254181, 2.60869565217391, 2.62876254180602, 2.64882943143813, 2.66889632107023, 2.68896321070234, 2.70903010033445, 2.72909698996656, 2.74916387959866, 2.76923076923077, 2.78929765886288, 2.80936454849498, 2.82943143812709, 2.84949832775920, 2.86956521739130, 2.88963210702341, 2.90969899665552, 2.92976588628763, 2.94983277591973, 2.96989966555184, 2.98996655518395, 3.01003344481605, 3.03010033444816, 3.05016722408027, 3.07023411371237, 3.09030100334448, 3.11036789297659, 3.13043478260870, 3.15050167224080, 3.17056856187291, 3.19063545150502, 3.21070234113712, 3.23076923076923, 3.25083612040134, 3.27090301003345, 3.29096989966555, 3.31103678929766, 3.33110367892977, 3.35117056856187, 3.37123745819398, 3.39130434782609, 3.41137123745819, 3.43143812709030, 3.45150501672241, 3.47157190635452, 3.49163879598662, 3.51170568561873, 3.53177257525084, 3.55183946488294, 3.57190635451505, 3.59197324414716, 3.61204013377926, 3.63210702341137, 3.65217391304348, 3.67224080267559, 3.69230769230769, 3.71237458193980, 3.73244147157191, 3.75250836120401, 3.77257525083612, 3.79264214046823, 3.81270903010033, 3.83277591973244, 3.85284280936455, 3.87290969899666, 3.89297658862876, 3.91304347826087, 3.93311036789298, 3.95317725752508, 3.97324414715719, 3.99331103678930, 4.01337792642141, 4.03344481605351, 4.05351170568562, 4.07357859531773, 4.09364548494983, 4.11371237458194, 4.13377926421405, 4.15384615384615, 4.17391304347826, 4.19397993311037, 4.21404682274248, 4.23411371237458, 4.25418060200669, 4.27424749163880, 4.29431438127090, 4.31438127090301, 4.33444816053512, 4.35451505016722, 4.37458193979933, 4.39464882943144, 4.41471571906355, 4.43478260869565, 4.45484949832776, 4.47491638795987, 4.49498327759197, 4.51505016722408, 4.53511705685619, 4.55518394648829, 4.57525083612040, 4.59531772575251, 4.61538461538462, 4.63545150501672, 4.65551839464883, 4.67558528428094, 4.69565217391304, 4.71571906354515, 4.73578595317726, 4.75585284280936, 4.77591973244147, 4.79598662207358, 4.81605351170569, 4.83612040133779, 4.85618729096990, 4.87625418060201, 4.89632107023411, 4.91638795986622, 4.93645484949833, 4.95652173913044, 4.97658862876254, 4.99665551839465, 5.01672240802676, 5.03678929765886, 5.05685618729097, 5.07692307692308, 5.09698996655518, 5.11705685618729, 5.13712374581940, 5.15719063545151, 5.17725752508361, 5.19732441471572, 5.21739130434783, 5.23745819397993, 5.25752508361204, 5.27759197324415, 5.29765886287625, 5.31772575250836, 5.33779264214047, 5.35785953177258, 5.37792642140468, 5.39799331103679, 5.41806020066890, 5.43812709030100, 5.45819397993311, 5.47826086956522, 5.49832775919732, 5.51839464882943, 5.53846153846154, 5.55852842809365, 5.57859531772575, 5.59866220735786, 5.61872909698997, 5.63879598662207, 5.65886287625418, 5.67892976588629, 5.69899665551839, 5.71906354515050, 5.73913043478261, 5.75919732441472, 5.77926421404682, 5.79933110367893, 5.81939799331104, 5.83946488294314, 5.85953177257525, 5.87959866220736, 5.89966555183946, 5.91973244147157, 5.93979933110368, 5.95986622073579, 5.97993311036789, 6.;
sins << 0., 0.0205663230027132, 0.0390160433647213, 0.0590891330065624, 0.0875596988696830, 0.0959822118249474, 0.121373632487893, 0.144185779407900, 0.168823702943980, 0.195714802779603, 0.182086468335945, 0.208556236727609, 0.225094826864952, 0.239997837196716, 0.261856373004331, 0.285616850959075, 0.307675255212350, 0.368369766783931, 0.323959067443884, 0.384881639934677, 0.363815465411856, 0.447469201284049, 0.453774250363027, 0.430583512112867, 0.443099359428671, 0.509029695458685, 0.475835951758427, 0.535054453990577, 0.517313698480048, 0.540962965727346, 0.545515801814871, 0.549079158057189, 0.608171721462356, 0.633254366558289, 0.661681941754734, 0.621837761755506, 0.716087740139810, 0.626367576826244, 0.655836894152803, 0.686777150859095, 0.783641511917343, 0.740251957156445, 0.687992462634859, 0.784761727801862, 0.812689567708724, 0.723454299040675, 0.867775567606339, 0.834921353384008, 0.886473449480867, 0.829994027552906, 0.936539227083496, 0.878125359050542, 0.857422602795660, 0.797532129862921, 0.943697646147127, 0.931398718818189, 0.831954959636186, 0.990429183436099, 0.937267902704322, 1.03366330075745, 0.934498869672776, 1.03339624571952, 0.997468793041113, 1.06835135036732, 0.935065588934669, 1.05824035228952, 0.900356286901882, 1.10344335276178, 1.08109260151034, 1.00924107228951, 0.894536706478818, 1.05842262698500, 0.869469062376110, 1.10339186007555, 1.12123314842733, 0.898684459599225, 1.07266484712897, 1.08181878008800, 0.859772954875467, 1.05813887444340, 0.927536817088291, 1.05875873937114, 1.05513797051990, 0.881028526179104, 0.940789571986141, 0.939650398904516, 0.895333225658922, 1.15791888887766, 0.819811378153096, 0.872483401229913, 0.913929786309735, 1.07742711882579, 0.948836532262710, 1.01695652247989, 1.07892353697484, 1.07951455459521, 0.926555376069836, 0.796683097955963, 0.971180186596668, 1.08404809595985, 0.938788138021134, 0.723978021690113, 0.845028175059507, 0.827345363692465, 0.963611479800734, 0.784913093396594, 0.902260395754080, 0.754290064829049, 0.640991769001049, 0.840961782568416, 0.884688925819984, 0.945578335759086, 0.734722787877624, 0.730891994457772, 0.560468510656587, 0.888009033487127, 0.588779454127353, 0.507860660213622, 0.723119729832821, 0.706654621382516, 0.852209479056328, 0.441125081583452, 0.703532575135291, 0.649072175609160, 0.768270742631807, 0.821436286437389, 0.812472042863249, 0.310112243913094, 0.290088866876053, 0.784062286903034, 0.724847602437022, 0.382946261736111, 0.333365214123254, 0.255326531995527, 0.510563540394420, 0.546504484804774, 0.561758001362831, 0.193398150326653, 0.211822141863330, 0.337944053003746, 0.0491697943148871, 0.506909715390791, 0.394250155597078, 0.344556489656333, 0.220319484594126, 0.466870975203072, 0.352811824041645, -0.0203204635966194, 0.000187284360740975, 0.390929784556070, -0.0636185847381180, 0.215749967807034, 0.391783875224768, 0.0131507101596210, 0.214743651863588, 0.313117360143471, -0.213347879945078, -0.152700491575586, 0.284183282760694, 0.230258633151635, -0.170326153940235, -0.138941908793679, -0.361493597493055, 0.0225982276008491, 0.136956358471678, -0.0134364651061402, -0.354908737138856, -0.338680251031658, -0.324487377118159, -0.250495042710380, -0.207682989113764, -0.201777395597538, -0.603650467101997, -0.0570224603490521, -0.494298935449787, -0.701565642803869, -0.199839524611218, -0.548524440885001, -0.336774711215616, -0.663082614278816, -0.665924584060438, -0.558180481080407, -0.709519401338939, -0.550362969544220, -0.317669574094212, -0.215362655162646, -0.557314553299032, -0.476358803662329, -0.618538714302365, -0.857936707662719, -0.650422788916676, -0.450608748642427, -1.03675737413944, -0.458466487973903, -0.435238631393051, -0.612515366468904, -1.02282034118212, -1.00591774855133, -0.754300354448578, -0.811106583146996, -0.977243563786221, -1.15873641827749, -0.967899906565075, -0.603952304631890, -0.614897411289103, -0.506405816692878, -1.08323303849733, -0.878993651876167, -1.21339204205580, -0.926163267157209, -1.14708966655702, -0.702523099754653, -0.997607886250364, -1.05378691425895, -0.520207754254763, -1.22657313553732, -0.972570592572648, -1.16907062433655, -0.906452454632314, -1.03946558253614, -0.550998692611392, -1.08167304585878, -0.897951496093406, -0.780087992998209, -1.05605506303820, -0.726866824733939, -1.09042965985860, -1.38018514904770, -0.950070929813976, -1.05770071443760, -1.07268971722784, -0.543996855503508, -0.606425043418392, -0.945835692115167, -0.669056893514066, -1.16728466807845, -0.938678055549470, -1.01236119569040, -0.725637220253413, -0.878964985274675, -0.938002625674076, -1.29352679841118, -1.12194428508496, -1.36126581275738, -0.535406897512086, -1.11461313522307, -1.26469342269406, -1.35376389844295, -0.853393422301156, -1.23411956192447, -0.889103354650984, -0.453241720722455, -0.674642312393962, -0.485956820045976, -1.34342137994975, -0.522858292122314, -1.28347238567162, -0.991285795882105, -0.837456034504287, -1.02889729768886, -0.547777267737865, -0.385836799097512, -0.618013718429130, -1.03722116318478, -0.872749491150546, -1.10717663074987, -0.974662603291053, -1.11073176801917, -0.356460205615645, -0.954131536713498, -0.953578387057411, -0.408819629096933, -1.20503187990326, -0.823728061276806, -0.639337429057833, -0.865717404705197, -0.431884787539002, -1.01026779136354, -0.756675282804455, -1.10586000122177, -0.662224314038648, -0.111456991937247, -0.769480559944682, -0.0502235743017712, -0.584109125124463, -0.902892919532128, -0.466296466268305, -0.357583159307505, -0.472303230829483, -0.482252751675765, -0.497157767695055, 0.0271725486596654, -0.370289805051389, -0.403480529070726, 0.205775238849162, -0.736735702304588, -0.668465354498537, -0.0640652586715190, -0.284538180097004, -0.156691852132801;
Eigen::Spline<double, 1,4> spline(Eigen::SplineFitting<Eigen::Spline<double, 1,4>>::Interpolate(sins, 4, times));
for (int i = 0+4; i < size-4; i++)
{
std::cout << times(i) << "\t" << spline(times(i)) << "\t" << sins(i) << "\n";
}
return 0;
}
关于c++ - 如何使用 Eigen for B-Splines 处理噪声序列数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34058076/
我有几个数据点似乎适合于通过它们拟合样条曲线。当我这样做时,我得到了一个非常坎bump的拟合,例如过度拟合,这不是我所理解的平滑。 是否有特殊的选项/参数来恢复像here这样的非常平滑的样条曲线的功能
在生产环境中运行 Angular 6 时出现此错误。 91%额外的 Assets 处理脚本-webpack-plugin✖「wdm」: Error: ENOENT: no such file or d
张力与三次样条插值有何关系?我指的是this article用于三次样条插值。第一个结点的张力系数 t=0,最后一个结点的张力系数 t=1。但是我们可以在哪里替换三次样条中的其他张力值,例如 0.1、
我是 R 的新手,我正在尝试将 smooth.spline() 应用于大型数据帧。我查看了相关线程(“将 n 个函数的列表应用于数据帧的每一行”,“如何应用样条基矩阵”,...)。这是我的数据框以及我
我知道平滑参数(lambda)对于拟合平滑样条曲线非常重要,但是我在这里没有看到有关如何选择合理的lambda(spar =?)的任何文章,有人告诉我spar通常在0到1的范围内。当使用smooth.
我需要一个插值函数来插值一个点: var times = new List(); var offsets = new List(); .. .. ..//I fill times and offset
我尝试了几种不同的开箱即用选项来平滑我的数据中的一个步骤,但还没有完全找到我所追求的。在下面粘贴一个小的可复制示例。正如下面的屏幕截图中突出显示的,是否有一个 R 函数可以平滑步骤,类似于 smoot
我使用smooth.spline来估计我的数据的三次样条。但是当我使用方程计算 90% 逐点置信区间时,结果似乎有点偏差。有人可以告诉我我是否做错了吗?我只是想知道是否有一个函数可以自动计算与 smo
我想对一些数据进行平滑样条拟合,我注意到内部计算的 LOOCV 误差似乎取决于数据是否无序。具体来说,我只在订购数据时得到预期的结果。 我不明白为什么会出现这种情况?有帮助吗? set.seed(0)
我正在尝试在 Windows 中安装 Apache Spline。我的 Spark 版本是 2.4.0Scala 版本为 2.12.0我按照这里提到的步骤 https://absaoss.github
我正在准备一些代码来用样条插入一系列点。 有many kinds样条:二次,三次,许多边界条件...... 到目前为止,我已经尝试了最流行的:三次样条,边界条件: 自然:二阶导数在第一点和最后点为零。
下图中,Matlab中使用spap2函数来平滑噪声数据。结果非常好。 Eigen 库支持此功能 Splines 。我正在寻找 Eigen 中的示例以获得类似的结果。对于 Matlab,我使用了 spa
我想在 R 中平滑非常长、嘈杂的数据。但我发现对于高度周期性的数据,开箱即用的 smooth.spline() 很快就会崩溃,平滑后的数据开始出现振铃现象。 考虑一个余弦时间序列(有或没有噪声) t
我对它们之间的关系有点困惑。在我的课上,我的教授询问如何使用自动计算的切线将 C1 连续分段 Hermite 曲线拟合到 x 个点。有人可以解释这是如何工作的吗? 最佳答案 埃尔米特样条是 的一种方法
我找到了 2012 年 Android API 的 Spline 实现: https://android.googlesource.com/platform/frameworks/base/+/mas
我有一个效果很好的 highcharts 样条图。我改变了一些 ajax 调用,现在它不会绘制连接前 30 个左右点的线。它只是绘制点一段时间,然后线条就出现了。我更关心线条而不是点。 有谁知道为什么
我想在我的屏幕上生成一个随机样条。这是我目前所拥有的: public class CurvedPath { Random rn; CatmullRomSpline curve; float[] xPt
我有严格增加的数据,并希望拟合一个单调增加的平滑样条曲线以及 smooth.spline()由于此功能的易用性,请尽可能使用该功能。 例如,我的数据可以通过示例有效地重现: testx <- 1:10
有没有办法计算在 R 中具有平滑样条曲线(或类似曲线)的特定点的曲率? 该曲线是根据一组 x,y 点计算的。 先感谢您。 最佳答案 如果您知道有一个 predict(),这实际上很容易。 smooth
我有一个月度图表(在 highcharts 中制作),其中有两个 SPLINE 系列。我想为图表中的系列添加随机文本(基于系列的随机位置),我怎样才能实现这一点。 我希望它看起来像这样。 最佳答案 您
我是一名优秀的程序员,十分优秀!