- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如果索引与另一个较小数组的值匹配,我想在一个较大的数组中找到它们。类似于下面的 new_array
:
import numpy as np
summed_rows = np.random.randint(low=1, high=14, size=9999)
common_sums = np.array([7,10,13])
new_array = np.where(summed_rows == common_sums)
但是,这会返回:
__main__:1: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.
>>>new_array
(array([], dtype=int64),)
我得到的最接近的是:
new_array = [np.array(np.where(summed_rows==important_sum)) for important_sum in common_sums[0]]
这给了我一个包含三个 numpy 数组的列表(每个数组对应一个“重要总和”),但每个数组的长度不同,这会在连接和 vstacking 方面产生进一步的下游问题。明确地说,我不想使用上面的行。我想使用 numpy 索引到 summed_rows
。我使用 numpy.where
、numpy.argwhere
和 numpy.intersect1d
查看了各种答案,但无法将这些想法组合在一起.我想我错过了一些简单的东西,问起来会更快。
提前感谢您的建议!
最佳答案
考虑到评论中建议的选项,并使用 numpy 的 in1d 选项添加一个额外的选项:
>>> import numpy as np
>>> summed_rows = np.random.randint(low=1, high=14, size=9999)
>>> common_sums = np.array([7,10,13])
>>> ind_1 = (summed_rows==common_sums[:,None]).any(0).nonzero()[0] # Option of @Brenlla
>>> ind_2 = np.where(summed_rows == common_sums[:, None])[1] # Option of @Ravi Sharma
>>> ind_3 = np.arange(summed_rows.shape[0])[np.in1d(summed_rows, common_sums)]
>>> ind_4 = np.where(np.in1d(summed_rows, common_sums))[0]
>>> ind_5 = np.where(np.isin(summed_rows, common_sums))[0] # Option of @jdehesa
>>> np.array_equal(np.sort(ind_1), np.sort(ind_2))
True
>>> np.array_equal(np.sort(ind_1), np.sort(ind_3))
True
>>> np.array_equal(np.sort(ind_1), np.sort(ind_4))
True
>>> np.array_equal(np.sort(ind_1), np.sort(ind_5))
True
如果你计时,你会发现它们都非常相似,但@Brenlla 的选项是最快的
python -m timeit -s 'import numpy as np; np.random.seed(0); a = np.random.randint(low=1, high=14, size=9999); b = np.array([7,10,13])' 'ind_1 = (a==b[:,None]).any(0).nonzero()[0]'
10000 loops, best of 3: 52.7 usec per loop
python -m timeit -s 'import numpy as np; np.random.seed(0); a = np.random.randint(low=1, high=14, size=9999); b = np.array([7,10,13])' 'ind_2 = np.where(a == b[:, None])[1]'
10000 loops, best of 3: 191 usec per loop
python -m timeit -s 'import numpy as np; np.random.seed(0); a = np.random.randint(low=1, high=14, size=9999); b = np.array([7,10,13])' 'ind_3 = np.arange(a.shape[0])[np.in1d(a, b)]'
10000 loops, best of 3: 103 usec per loop
python -m timeit -s 'import numpy as np; np.random.seed(0); a = np.random.randint(low=1, high=14, size=9999); b = np.array([7,10,13])' 'ind_4 = np.where(np.in1d(a, b))[0]'
10000 loops, best of 3: 63 usec per loo
python -m timeit -s 'import numpy as np; np.random.seed(0); a = np.random.randint(low=1, high=14, size=9999); b = np.array([7,10,13])' 'ind_5 = np.where(np.isin(a, b))[0]'
10000 loops, best of 3: 67.1 usec per loop
关于python - 根据另一个 numpy 数组中的值查找 numpy 数组的索引,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58066974/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!