gpt4 book ai didi

Java伪尾调用递归产生更好的性能

转载 作者:行者123 更新时间:2023-12-01 21:49:26 25 4
gpt4 key购买 nike

我只是编写一些简单的实用程序来计算 linkedList 的长度,这样 linkedList 就不会托管其大小/长度的“内部”计数器。考虑到这一点,我有 3 个简单的方法:

  1. 迭代linkedList,直到到达“结束”
  2. 递归计算长度
  3. 递归计算长度,无需将控制权返回给调用函数(使用某种尾部调用递归)

下面是一些捕获这 3 种情况的代码:

// 1. iterative approach
public static <T> int getLengthIteratively(LinkedList<T> ll) {

int length = 0;
for (Node<T> ptr = ll.getHead(); ptr != null; ptr = ptr.getNext()) {
length++;
}

return length;
}

// 2. recursive approach
public static <T> int getLengthRecursively(LinkedList<T> ll) {
return getLengthRecursively(ll.getHead());
}

private static <T> int getLengthRecursively(Node<T> ptr) {

if (ptr == null) {
return 0;
} else {
return 1 + getLengthRecursively(ptr.getNext());
}
}

// 3. Pseudo tail-recursive approach
public static <T> int getLengthWithFakeTailRecursion(LinkedList<T> ll) {
return getLengthWithFakeTailRecursion(ll.getHead());
}

private static <T> int getLengthWithFakeTailRecursion(Node<T> ptr) {
return getLengthWithFakeTailRecursion(ptr, 0);
}

private static <T> int getLengthWithFakeTailRecursion(Node<T> ptr, int result) {
if (ptr == null) {
return result;
} else {
return getLengthWithFakeTailRecursion(ptr.getNext(), result + 1);
}
}

现在我知道 JVM 不支持开箱即用的尾递归,但是当我运行一些具有约 10k 节点的字符串 linkedList 的简单测试时,我注意到 getLengthWithFakeTailRecursion 始终优于 getLengthRecursively 方法(约 40%)。增量是否仅归因于案例#2 的控制权被传回每个节点并且我们被迫遍历所有堆栈帧这一事实?

编辑:这是我用来检查性能数字的简单测试:

public class LengthCheckerTest {

@Test
public void testLengthChecking() {

LinkedList<String> ll = new LinkedList<String>();
int sizeOfList = 12000;
// int sizeOfList = 100000; // Danger: This causes a stackOverflow in recursive methods!
for (int i = 1; i <= sizeOfList; i++) {
ll.addNode(String.valueOf(i));
}

long currTime = System.nanoTime();
Assert.assertEquals(sizeOfList, LengthChecker.getLengthIteratively(ll));
long totalTime = System.nanoTime() - currTime;
System.out.println("totalTime taken with iterative approach: " + (totalTime / 1000) + "ms");

currTime = System.nanoTime();
Assert.assertEquals(sizeOfList, LengthChecker.getLengthRecursively(ll));
totalTime = System.nanoTime() - currTime;
System.out.println("totalTime taken with recursive approach: " + (totalTime / 1000) + "ms");

// Interestingly, the fakeTailRecursion always runs faster than the vanillaRecursion
// TODO: Look into whether stack-frame collapsing has anything to do with this
currTime = System.nanoTime();
Assert.assertEquals(sizeOfList, LengthChecker.getLengthWithFakeTailRecursion(ll));
totalTime = System.nanoTime() - currTime;
System.out.println("totalTime taken with fake TCR approach: " + (totalTime / 1000) + "ms");
}
}

最佳答案

您的基准测试方法存在缺陷。您在同一个 JVM 中执行所有三个测试,因此它们的位置并不相同。当执行假尾测试时,LinkedListNode 类已经经过 JIT 编译,因此运行速度更快。您可以更改测试顺序,您会看到不同的数字。每个测试都应该在单独的 JVM 中执行。

我们写简单的JMH microbenchmark对于您的情况:

import java.util.concurrent.TimeUnit;

import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.annotations.*;

// 5 warm-up iterations, 500 ms each, then 10 measurement iterations 500 ms each
// repeat everything three times (with JVM restart)
// output average time in microseconds
@Warmup(iterations = 5, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 10, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Fork(3)
@State(Scope.Benchmark)
public class ListTest {
// You did not supply Node and LinkedList implementation
// but I assume they look like this
static class Node<T> {
final T value;
Node<T> next;

public Node(T val) {value = val;}
public void add(Node<T> n) {next = n;}

public Node<T> getNext() {return next;}
}

static class LinkedList<T> {
Node<T> head;

public void setHead(Node<T> h) {head = h;}
public Node<T> getHead() {return head;}
}

// Code from your question follows

// 1. iterative approach
public static <T> int getLengthIteratively(LinkedList<T> ll) {

int length = 0;
for (Node<T> ptr = ll.getHead(); ptr != null; ptr = ptr.getNext()) {
length++;
}

return length;
}

// 2. recursive approach
public static <T> int getLengthRecursively(LinkedList<T> ll) {
return getLengthRecursively(ll.getHead());
}

private static <T> int getLengthRecursively(Node<T> ptr) {

if (ptr == null) {
return 0;
} else {
return 1 + getLengthRecursively(ptr.getNext());
}
}

// 3. Pseudo tail-recursive approach
public static <T> int getLengthWithFakeTailRecursion(LinkedList<T> ll) {
return getLengthWithFakeTailRecursion(ll.getHead());
}

private static <T> int getLengthWithFakeTailRecursion(Node<T> ptr) {
return getLengthWithFakeTailRecursion(ptr, 0);
}

private static <T> int getLengthWithFakeTailRecursion(Node<T> ptr, int result) {
if (ptr == null) {
return result;
} else {
return getLengthWithFakeTailRecursion(ptr.getNext(), result + 1);
}
}

// Benchmarking code

// Measure for different list length
@Param({"10", "100", "1000", "10000"})
int n;
LinkedList<Integer> list;

@Setup
public void setup() {
list = new LinkedList<>();
Node<Integer> cur = new Node<>(0);
list.setHead(cur);
for(int i=1; i<n; i++) {
Node<Integer> next = new Node<>(i);
cur.add(next);
cur = next;
}
}

// Do not forget to return result to the caller, so it's not optimized out
@Benchmark
public int testIteratively() {
return getLengthIteratively(list);
}

@Benchmark
public int testRecursively() {
return getLengthRecursively(list);
}

@Benchmark
public int testRecursivelyFakeTail() {
return getLengthWithFakeTailRecursion(list);
}
}

这是我的机器上的结果(x64 Win7,Java 8u71)

Benchmark                           (n)  Mode  Cnt   Score    Error  Units
ListTest.testIteratively 10 avgt 30 0,009 ± 0,001 us/op
ListTest.testIteratively 100 avgt 30 0,156 ± 0,001 us/op
ListTest.testIteratively 1000 avgt 30 2,248 ± 0,036 us/op
ListTest.testIteratively 10000 avgt 30 26,416 ± 0,590 us/op
ListTest.testRecursively 10 avgt 30 0,014 ± 0,001 us/op
ListTest.testRecursively 100 avgt 30 0,191 ± 0,003 us/op
ListTest.testRecursively 1000 avgt 30 3,599 ± 0,031 us/op
ListTest.testRecursively 10000 avgt 30 40,071 ± 0,328 us/op
ListTest.testRecursivelyFakeTail 10 avgt 30 0,015 ± 0,001 us/op
ListTest.testRecursivelyFakeTail 100 avgt 30 0,190 ± 0,002 us/op
ListTest.testRecursivelyFakeTail 1000 avgt 30 3,609 ± 0,044 us/op
ListTest.testRecursivelyFakeTail 10000 avgt 30 41,534 ± 1,186 us/op

如您所见,假尾速度与简单递归速度相同(在误差范围内),但比迭代方法慢 20-60%。所以你的结果没有被重现。

如果您实际上想要的不是稳态测量结果,而是单次测量结果(无需预热),您可以使用以下选项启动相同的基准测试:-ss -wi 0 -i 1 -f 10 。结果如下:

Benchmark                           (n)  Mode  Cnt    Score     Error  Units
ListTest.testIteratively 10 ss 10 16,095 ± 0,831 us/op
ListTest.testIteratively 100 ss 10 19,780 ± 6,440 us/op
ListTest.testIteratively 1000 ss 10 74,316 ± 26,434 us/op
ListTest.testIteratively 10000 ss 10 366,496 ± 42,299 us/op
ListTest.testRecursively 10 ss 10 19,594 ± 7,084 us/op
ListTest.testRecursively 100 ss 10 21,973 ± 0,701 us/op
ListTest.testRecursively 1000 ss 10 165,007 ± 54,915 us/op
ListTest.testRecursively 10000 ss 10 563,739 ± 74,908 us/op
ListTest.testRecursivelyFakeTail 10 ss 10 19,454 ± 4,523 us/op
ListTest.testRecursivelyFakeTail 100 ss 10 25,518 ± 11,802 us/op
ListTest.testRecursivelyFakeTail 1000 ss 10 158,336 ± 43,646 us/op
ListTest.testRecursivelyFakeTail 10000 ss 10 755,384 ± 232,940 us/op

正如您所看到的,第一次启动比后续启动慢很多倍。而且你的结果仍然没有重现。我观察到,对于 n = 10000testRecursivelyFakeTail 实际上较慢(但在预热后,它达到了与 testRecursively 相同的峰值速度。

关于Java伪尾调用递归产生更好的性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35423375/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com