- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想为不同的站准备xtabs
。但它给了我跨站的整体表格。我使用了以下代码
library(tidyverse)
df %>% group_by(Station) %>%
xtabs( ~ Observed + Forecasted, data = .)
这是给了我
#> Forecasted
#>Observed 1 3 4 5 9
#> 1 132 5 31 31 3
#> 3 16 0 6 13 7
#> 4 6 0 13 23 8
#> 5 4 0 16 33 15
#> 9 0 0 0 2 0
但我想像这样输出站位
Aizawl
#> Forecasted
#>Observed 1 3 4 5 9
#> 1 132 5 31 31 3
#> 3 16 0 6 13 7
#> 4 6 0 13 23 8
#> 5 4 0 16 33 15
#> 9 0 0 0 2 0
Serchhip
#> Forecasted
#>Observed 1 3 4 5 9
#> 1 132 5 31 31 3
#> 3 16 0 6 13 7
#> 4 6 0 13 23 8
#> 5 4 0 16 33 15
#> 9 0 0 0 2 0
然后我想将输出导出到 .csv 文件中。
df = structure(list(Station = c("Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip"),
Observed = c(1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1,
1, 1, 1, 1, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 4, 1, 3, 1, 1,
1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 3, 4, 1, 1, 1, 1, 1, 3, 5,
5, 3, 5, 3, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 4, 1, 1, 1, 1,
1, 3, 1, 4, 1, 1, 1, 1, 1, 4, 4, 5, 1, 5, 4, 5, 5, 5, 5,
1, 5, 1, 4, 5, 4, 4, 5, 4, 5, 5, 3, 1, 5, 3, 4, 3, 4, 5,
5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 5, 3, 4, 4, 5, 3,
5, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 3, 5, 5, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1,
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5,
3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 3, 4, 1, 1, 1, 1,
1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 4, 3, 9, 5, 5, 4, 1, 5, 1, 1, 1, 1, 4, 5, 5, 5,
5, 5, 5, 1, 1, 4, 1, 4, 4, 4, 5, 1, 1, 4, 3, 5, 1, 1, 4,
3, 5, 3, 4, 5, 3, 4, 4, 5, 5, 3, 4, 5, 5, 5, 5, 5, 4, 4,
4, 4, 5, 1, 9, 5, 5), Forecasted = c(1, 1, 1, 5, 5, 1, 1,
1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5,
5, 9, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 4, 1, 4, 4, 1, 1, 5, 3, 1, 1, 1, 4, 5, 5, 5, 5,
1, 1, 1, 5, 5, 1, 5, 5, 5, 9, 4, 5, 4, 4, 4, 3, 4, 4, 1,
1, 5, 5, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 5, 4,
4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 5, 4, 1, 1,
4, 4, 5, 5, 5, 5, 1, 4, 5, 5, 1, 4, 4, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 9, 1, 1, 1, 5, 4, 1, 1, 1, 5, 4, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 9, 5, 5, 1, 1, 1, 1, 1,
1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 5, 5, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1,
4, 4, 4, 4, 1, 4, 1, 3, 1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1,
1, 4, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4,
5, 4, 4, 5, 5, 4, 4, 5, 4, 1, 4, 4, 5, 5, 4, 5, 4, 5, 4,
5, 5, 5, 1, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9)), row.names = c(NA,
364L), class = "data.frame")
最佳答案
如果你想对xtabs
(三维数组)而不是list
或data.frame
进行操作,那么把分层变量,即 Station
,到 xtabs()
中公式的最后位置。
res <- xtabs( ~ Observed + Forecasted + Station, df)
res
# , , Station = Aizawl
#
# Forecasted
# Observed 1 3 4 5 9
# 1 56 2 13 13 1
# 3 12 0 4 8 3
# 4 4 0 9 11 4
# 5 3 0 7 23 9
# 9 0 0 0 0 0
#
# , , Station = Serchhip
#
# Forecasted
# Observed 1 3 4 5 9
# 1 76 3 18 18 2
# 3 4 0 2 5 4
# 4 2 0 4 12 4
# 5 1 0 9 10 6
# 9 0 0 0 2 0
class(res)
# [1] "xtabs" "table"
将数组打印到 2 个单独的 csv 文件:
lapply(dimnames(res)$Station, function(x) write.csv(res[,,x], paste0("table_", x, ".csv")))
将数组转换为 data.frame
格式:
library(tidyr)
res %>%
as.data.frame() %>%
pivot_wider(names_from = Forecasted, values_from = Freq)
# # A tibble: 10 x 7
# Observed Station `1` `3` `4` `5` `9`
# <fct> <fct> <int> <int> <int> <int> <int>
# 1 1 Aizawl 56 2 13 13 1
# 2 3 Aizawl 12 0 4 8 3
# 3 4 Aizawl 4 0 9 11 4
# 4 5 Aizawl 3 0 7 23 9
# 5 9 Aizawl 0 0 0 0 0
# 6 1 Serchhip 76 3 18 18 2
# 7 3 Serchhip 4 0 2 5 4
# 8 4 Serchhip 2 0 4 12 4
# 9 5 Serchhip 1 0 9 10 6
# 10 9 Serchhip 0 0 0 2 0
关于r - R中的分组xtabs,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61968797/
您好,我正在处理 BIRT 报告。我有一个查询,我必须对父级的重复数据进行分组,但子级也不能分组! 在我的查询中: item 是父项,item_ledger_entry 是子项。我有来自 item.N
我正在使用 GA API。 这是针对 MCF 目标报告(底部)的标准目标完成指标表(顶部) 看一下这个: 总数加起来 (12,238),但看看按 channel 分组的分割有多么不同!我以为这些会很接
我正在开发一个流量计数器,我想获得 IP 和重复计数,但是如何? 就像是 :select ip, count(ip) from Redirect 返回 : null total ip count 重定
我尝试编写一个正则表达式来匹配条件表达式,例如: a!=2 1+2=2+a 我尝试提取运算符。我当前的正则表达式是“.+([!=<>]+).+” 但问题是匹配器总是尝试匹配组中可能的最短字符串
在 MS Transact SQL 中,假设我有一个这样的表(订单): Order Date Order Total Customer # 09/30/2008 8
我想按 m.ID 分组,并对每个 m.id 求和 (pm.amount_construction* prod.anzahl) 实际上我有以下结果: Meterial_id | amount_const
我想根据多列中的值对值进行分组。这是一个例子: 我想得到输出: {{-30,-50,20},{-20,30,60},{-30,NULL or other value, 20}} 我设法到达: SELE
我正在尝试找出运行此查询的最佳方式。我基本上需要返回在我们的系统中只下了一个订单的客户的“登录”字段列表(登录字段基本上是客户 ID/ key )。 我们系统的一些背景...... 客户在同一日期下的
给定以下mysql结果集: id code name importance '1234', 'ID-CS-B', 'Chocolate Sauce'
大家好,我的数据框中有以下列: LC_REF 1 DT 16 2C 2 DT 16 2C 3 DT 16 2C 1 DT 16 3C 6 DT 16 3C 3
我有这样的 mongoDB 集合 { "_id" : "EkKTRrpH4FY9AuRLj", "stage" : 10, }, { "_id" : "EkKTRrpH4FY9
假设我有一组数据对,其中 index 0 是值,index 1 是类型: input = [ ('11013331', 'KAT'), ('9085267',
java中用stream进行去重,排序,分组 一、distinct 1. 八大基本数据类型 List collect = ListUtil.of(1, 2, 3, 1, 2).stream().fil
基本上,我从 TABLE_A 中的这个开始 France - 100 France - 200 France - 300 Mexico - 50 Mexico - 50 Mexico - 56 Pol
我希望这个正则表达式 ([A-Z]+)$ 将选择此示例中的最后一次出现: AB.012.00.022ABC-1 AB.013.00.022AB-1 AB.014.00.022ABAB-1 但我没有匹配
我创建了一个数据透视表,但数据没有组合在一起。 任何人都可以帮助我获得所需的格式吗? 我为获取数据透视表而编写的查询: DECLARE @cols AS NVARCHAR(MAX), -- f
我想按时间段(月,周,日,小时,...)选择计数和分组。例如,我想选择行数并将它们按 24 小时分组。 我的表创建如下。日期是时间戳。 CREATE TABLE MSG ( MSG_ID dec
在 SQL Server 2005 中,我有一个包含如下数据的表: WTN------------Date 555-111-1212 2009-01-01 555-111-1212 2009-
题 假设我有 k 个标量列,如果它们沿着每列彼此在一定距离内,我想对它们进行分组。 假设简单 k 是 2 并且它们是我唯一的列。 pd.DataFrame(list(zip(sorted(choice
问题 在以下数据框中 df : import random import pandas as pd random.seed(999) sz = 50 qty = {'one': 1, 'two': 2
我是一名优秀的程序员,十分优秀!