gpt4 book ai didi

java - 使用带有线程参数的 Gregory-Leibniz 时出现 pi 值错误

转载 作者:行者123 更新时间:2023-12-01 19:37:55 27 4
gpt4 key购买 nike

我正在尝试使用多线程并指定要使用的线程数来实现 Java 中的 Gregory-Leibniz。我失败了,因为最后 PI 给我的值为 43。

有人可以帮我吗?如果我不必输入线程数我会很好,但是输入线程数会破坏我的程序并且不知道如何解决这个问题。

    System.out.print("Insert Number of threads:");
int numetothreads = scannerObj.nextInt();
System.out.println("Nº threads : " + numetothreads);
//https://stackoverflow.com/questions/949355/executors-newcachedthreadpool-versus-executors-newfixedthreadpool
ExecutorService es = Executors.newFixedThreadPool(numetothreads);
long ti = System.currentTimeMillis();


//separate in 4 and join after
Future<Double> parte1 = es.submit(new CarlzParalel(1, 100000000));
Future<Double> parte2 = es.submit(new CarlzParalel(100000001, 200000000));
Future<Double> parte3 = es.submit(new CarlzParalel(200000001, 300000000));
Future<Double> parte4 = es.submit(new CarlzParalel(400000001, 500000000));

这就是我用来指定线程数的内容

public class CarlzParalel implements Callable<Double> {

private int begin;
private int end;

public CarlzParalel(int begin, int end) {
this.begin= begin;
this.end = end;
}

public Double call() throws Exception {
double sum = 0.0;
double fator;
for (int i = begin; i <= end; i++) {
if (i % 2 == 0) {
fator = Math.pow(1.0, i + 1);
} else {
fator = Math.pow(1.0, -i + 1);
}
sum += fator / (2.0 * (double) i - 1.0);
}

return sum;
}


public static void main(String[] args) throws InterruptedException, ExecutionException {
//cria um pool de threads para realizar o cálculo
Scanner scannerObj = new Scanner(System.in);

//System.out.println("Nº threads : " + listathreads);
//ExecutorService es = Executors.newCachedThreadPool();
System.out.print("Insert number of threads:");
int numetothreads = scannerObj.nextInt();
System.out.println("Nº threads : " + numetothreads);
//https://stackoverflow.com/questions/949355/executors-newcachedthreadpool-versus-executors-newfixedthreadpool
ExecutorService es = Executors.newFixedThreadPool(numetothreads);
long ti = System.currentTimeMillis();


//separate in 4 then join all
Future<Double> parte1 = es.submit(new CarlzParalel(1, 100000000));
Future<Double> parte2 = es.submit(new CarlzParalel(100000001, 200000000));
Future<Double> parte3 = es.submit(new CarlzParalel(200000001, 300000000));
Future<Double> parte4 = es.submit(new CarlzParalel(400000001, 500000000));

/*
Future<Double> parte1 = es.submit(new CarlzParalel(1,100000000));
Future<Double> parte2 = es.submit(new CarlzParalel(100000001,200000000));
Future<Double> parte3 = es.submit(new CarlzParalel(200000001,300000000));
Future<Double> parte4 = es.submit(new CarlzParalel(300000001,400000000));*/

//join the values
double pi = 4.0 * (parte1.get() + parte2.get() + parte3.get() + parte4.get());

es.shutdown();

System.out.println("Pi is " + pi);
long tf = System.currentTimeMillis();
long tcc = tf-ti;
System.out.println("Time with concurrency " + tcc);

ti = System.currentTimeMillis();

//separate in 4 then join all without concurrency

try {
Double parteA = (new CarlzParalel(1, 100000000)).call();
Double parteB = (new CarlzParalel(100000001, 200000000)).call();
Double parteC = (new CarlzParalel(200000001, 300000000)).call();
Double parteD = (new CarlzParalel(400000001, 500000000)).call();
pi = 4.0 * (parteA + parteB + parteC + parteD);
} catch (Exception e) {
e.printStackTrace();
}

//join them all

System.out.println("PI is " + pi);
tf = System.currentTimeMillis();
long tsc = tf - ti;
double divisao = (double) tcc / (double) tsc;
double gain = (divisao) * 100;
System.out.println("Time with no concurrency " + tsc);
System.out.println("Gain % – TCC/TSC * 100 = " + gain + " %");
System.out.println("Number of processores: " + Runtime.getRuntime().availableProcessors());


}
}
Insert number of threads:4
Nº threads : 4
Pi is 43.41189321992768
Time wasted with concurrency 10325
Pi is 43.41189321992768
Time wasted without concurrecy 42131
gainz% – TCC/TSC * 100 = 24.506895160333247 %
Nº threads: 4

最佳答案

假设您正在尝试计算公式:

enter image description here

那么你的求和方法看起来不正确。

您拥有的分子代码将始终返回 1。如果您尝试让它返回 1 或 -1,有多种方法可以实现,例如:

   double numerator = n % 2 == 0 ? 1 : -1;

分母对我来说也看起来不对,我可能会喜欢这样的东西:

   double denominator = n * 2 + 1;

由于您从 1 而不是 0 开始,因此需要修改 for 循环以从输入参数中减去 1。该方法总共如下所示:

    public Double call() throws Exception {
double sum = 0.0;
for (int i = begin - 1; i < end; i++) {
double numerator = i % 2 == 0 ? 1 : -1;
double denominator = i * 2 + 1;
sum += numerator / denominator;
}
return sum;
}

但是

  1. 您的输入缺少 300000001 到 400000000 的范围

  2. double 并不真正适合任何类型的精度。开箱即用,您可以使用 BigDecimal,但显然它至少会慢一个因子。

关于精度和 double ,如果以下结果不同,我不会感到惊讶:

    double pi = 4.0 * (parte1.get() + parte2.get() + parte3.get() + parte4.get());
System.out.println("Pi is " + pi);


// reverse the order of the sum
double 4.0 * (parte4.get() + parte3.get() + parte2.get() + parte1.get());
System.out.println("Pi is " + pi);

关于java - 使用带有线程参数的 Gregory-Leibniz 时出现 pi 值错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56681534/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com