gpt4 book ai didi

r - mlr:为什么使用并行化时超参数调优的再现性会失败?

转载 作者:行者123 更新时间:2023-12-01 19:35:27 27 4
gpt4 key购买 nike

我在 mlr cheatsheet 中使用基于快速入门示例的代码。我添加了并行化并尝试多次调整参数。

问题:为什么即使我每次在调优前都设置了set.seed(),重现性还是会失败(为什么结果不一样)?我的代码中缺少什么?我应该如何修改代码以实现可重现性?

代码(在我的电脑上最多运行 1 分钟):

library(mlr)
#> Loading required package: ParamHelpers
library(parallel)
library(parallelMap)

# Load data
data(Soybean, package = "mlbench")

# Initialize paralelllization
parallelStartSocket(cpus = 2)
#> Starting parallelization in mode=socket with cpus=2.

# Prepare data, task, learner
soy = createDummyFeatures(Soybean, target = "Class")
tsk = makeClassifTask(data = soy, target = "Class")
ho = makeResampleInstance("Holdout", tsk)
tsk.train = subsetTask(tsk, ho$train.inds[[1]])

lrn = makeLearner("classif.xgboost", nrounds = 10)
#> Warning in makeParam(id = id, type = "numeric", learner.param = TRUE, lower = lower, : NA used as a default value for learner parameter missing.
#> ParamHelpers uses NA as a special value for dependent parameters.

# Prepare for hyperparametar tuning
ps = makeParamSet(makeNumericParam("eta", 0, 1))
tc = makeTuneControlMBO(budget = 1)

# Turn off excessive output
configureMlr(show.info = FALSE, show.learner.output = FALSE)

# Tune parameters
suppressMessages({

# set.seed(123456, "L'Ecuyer-CMRG")
clusterSetRNGStream(iseed = 123456)
tr1 = tuneParams(lrn, tsk.train, cv2, acc, ps, tc)

# set.seed(123456, "L'Ecuyer-CMRG")
clusterSetRNGStream(iseed = 123456)
tr2 = tuneParams(lrn, tsk.train, cv2, acc, ps, tc)

})

# Stop paralellization
parallelStop()
#> Stopped parallelization. All cleaned up.

结果不一样:

all.equal(tr1, tr2)
#> [1] "Component \"x\": Component \"eta\": Mean relative difference: 0.1849302"
#> [2] "Component \"y\": Mean relative difference: 1.074668e-05"
#> [3] "Component \"resampling\": Component \"train.inds\": Component 1: Numeric: lengths (228, 227) differ"
#> [4] "Component \"resampling\": Component \"train.inds\": Component 2: Numeric: lengths (227, 228) differ"
#> [5] "Component \"resampling\": Component \"test.inds\": Component 1: Numeric: lengths (227, 228) differ"
#> [6] "Component \"resampling\": Component \"test.inds\": Component 2: Numeric: lengths (228, 227) differ"
#> [7] "Component \"mbo.result\": Component \"x\": Component \"eta\": Mean relative difference: 0.1849302"
#> [8] "Component \"mbo.result\": Component \"y\": Mean relative difference: 1.074668e-05"
#> [9] "Component \"mbo.result\": Component \"opt.path\": Component \"env\": Component \"exec.time\": Mean relative difference: 0.1548913"
#> [10] "Component \"mbo.result\": Component \"opt.path\": Component \"env\": Component \"path\": Component \"eta\": Mean relative difference: 0.773126"
#> [11] "Component \"mbo.result\": Component \"opt.path\": Component \"env\": Component \"path\": Component \"y\": Mean relative difference: 0.03411588"
#> [12] "Component \"mbo.result\": Component \"final.opt.state\": Component \"loop.starttime\": Mean absolute difference: 1.810968"
#> [13] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.path\": Component \"env\": Component \"exec.time\": Mean relative difference: 0.1548913"
#> [14] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.path\": Component \"env\": Component \"path\": Component \"eta\": Mean relative difference: 0.773126"
#> [15] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.path\": Component \"env\": Component \"path\": Component \"y\": Mean relative difference: 0.03411588"
#> [16] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.problem\": Component \"design\": Component \"eta\": Mean relative difference: 0.773126"
#> [17] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.result\": Component \"mbo.result\": Component \"x\": Component \"eta\": Mean relative difference: 0.1849302"
#> [18] "Component \"mbo.result\": Component \"final.opt.state\": Component \"opt.result\": Component \"mbo.result\": Component \"y\": Mean relative difference: 1.074668e-05"
#> [19] "Component \"mbo.result\": Component \"final.opt.state\": Component \"random.seed\": Mean relative difference: 1.28965"
#> [20] "Component \"mbo.result\": Component \"final.opt.state\": Component \"time.created\": Mean absolute difference: 5.489337"
#> [21] "Component \"mbo.result\": Component \"final.opt.state\": Component \"time.last.saved\": Mean absolute difference: 5.489337"
#> [22] "Component \"mbo.result\": Component \"final.opt.state\": Component \"time.used\": Mean relative difference: 0.6841712"

我也试过

set.seed(123456, "L'Ecuyer-CMRG")

代替

parallel::clusterSetRNGStream(iseed = 123456)

这并没有导致可重复性。

但是当关闭并行化时,结果是相同的(set.seed(123456, "L'Ecuyer-CMRG")(开始/结束时间和持续时间除外)。

最佳答案

以下代码创建相同的可重现结果(计时除外)

library(mlr)
library(parallel)
library(parallelMap)

# Load data
data(Soybean, package = "mlbench")

# Initialize paralelllization
parallelStartSocket(cpus = 2)

# Prepare data, task, learner
soy = createDummyFeatures(Soybean, target = "Class")
tsk = makeClassifTask(data = soy, target = "Class")
ho = makeResampleInstance("Holdout", tsk)
tsk.train = subsetTask(tsk, ho$train.inds[[1]])

lrn = makeLearner("classif.xgboost", nrounds = 10)

# Prepare for hyperparametar tuning
ps = makeParamSet(makeNumericParam("eta", 0, 1))
tc = makeTuneControlMBO(budget = 1)

# Turn off excessive output
configureMlr(show.info = FALSE, show.learner.output = FALSE)

# Tune parameters
suppressMessages({

set.seed(123456, "L'Ecuyer-CMRG")
clusterSetRNGStream(iseed = 123456)
tr1 = tuneParams(lrn, tsk.train, cv2, acc, ps, tc)

set.seed(123456, "L'Ecuyer-CMRG")
clusterSetRNGStream(iseed = 123456)
tr2 = tuneParams(lrn, tsk.train, cv2, acc, ps, tc)

})

parallelStop()

我改变了什么?我还设置了本地种子。为什么?因为这不仅仅是关于并行进程的播种。主机上的播种也很重要,因为它会影响例如。重采样(在母版上绘制)。

关于r - mlr:为什么使用并行化时超参数调优的再现性会失败?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51333410/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com