gpt4 book ai didi

java - 修改 Java Ford Fulkerson 实现以打印最大流量解决方案中每个边缘使用的最大流量?

转载 作者:行者123 更新时间:2023-12-01 19:22:01 27 4
gpt4 key购买 nike

我想修改this implementation of the Ford-Fulkerson algorithm (也在下面发布)以便我可以绘制节点图并分析数据。我不仅想输出最大流量,还想输出每个边缘的最大流量,例如,如果最大流量为 50 并且它使用从节点 1 到 3 的流量,值为 10 我想将其打印在类似于 1 - 3 - 10 或类似的格式。我尝试打印 u 和 v,然后打印残差[u][v],但看起来不正确。有什么想法吗?

// Java program for implementation of Ford Fulkerson algorithm 
import java.util.*;
import java.lang.*;
import java.io.*;
import java.util.LinkedList;

class MaxFlow
{
static final int V = 6; //Number of vertices in graph

/* Returns true if there is a path from source 's' to sink
't' in residual graph. Also fills parent[] to store the
path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not
// visited
boolean visited[] = new boolean[V];
for(int i=0; i<V; ++i)
visited[i]=false;

// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s]=-1;

// Standard BFS Loop
while (queue.size()!=0)
{
int u = queue.poll();

for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}

// If we reached sink in BFS starting from source, then
// return true, else false
return (visited[t] == true);
}

// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;

// Create a residual graph and fill the residual graph
// with given capacities in the original graph as
// residual capacities in residual graph

// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];

for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];

// This array is filled by BFS and to store path
int parent[] = new int[V];

int max_flow = 0; // There is no flow initially

// Augment the flow while tere is path from source
// to sink
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edhes
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path_flow = Math.min(path_flow, rGraph[u][v]);
}

// update residual capacities of the edges and
// reverse edges along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}

// Add path flow to overall flow
max_flow += path_flow;
}

// Return the overall flow
return max_flow;
}

// Driver program to test above functions
public static void main (String[] args) throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] =new int[][] { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
MaxFlow m = new MaxFlow();

System.out.println("The maximum possible flow is " +
m.fordFulkerson(graph, 0, 5));

}
}


最佳答案

每当您沿着增广路径流动时,您都会使用流动值增加 rGraph 中的每条边(并将其反向减少相同的值)。由于rGraph被初始化为graph的值,这意味着你可以通过取graph[u][v]中的正数来得到你想要的东西- rGraph[u][v]。以你的例子来说,结果是

0 12 11 0 0 0
-12 0 0 12 0 0
-11 0 0 0 11 0
0 -12 0 0 -7 19
0 0 -11 7 0 4
0 0 0 -19 -4 0

这与 CLRS 图 26.6,p. 中的结果相匹配。 727,这个例子似乎起源于此。

关于java - 修改 Java Ford Fulkerson 实现以打印最大流量解决方案中每个边缘使用的最大流量?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59348182/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com