- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个简单的汇总函数,以加快 R Markdown 文件中使用的多列数据的报告速度。
var1 是数据的分类列,t_var 是表示数据四分之一的整数,dt 是完整数据。
summarise_data_categorical <- function(var1, t_var, dt){
print(var1)
print(t_var)
#Select the columns to aggregate
group_func <- dt %>%
select(one_of(t_var, var1)) %>%
group_by(t_var,var1)
#create simple count summary
count_table <- group_func %>%
summarise(count = n()) %>%
spread(t_var, count)
#create a frequency version of the same table...
freq <- dt %>%
select(t_var, var1) %>%
group_by(t_var,var1) %>%
summarise(count = n()) %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)
#Present that table
freq_table <- freq %>%
spread(t_var, freq)
#Create the chart to do the same thing..
freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes(x=t_var, y = freq, colour=var1))
#Compile outputs as a list
results <- list(count_table, freq_table, freq_chart)
#Return list
results
}
假设我有一个框架:
fr <- data.frame(lets = sample(LETTERS, 100, replace=TRUE),
`quarter type` = sample(1:4, 100, replace=TRUE))
如果我运行该函数,则:
summarise_data_categorical("lets", "quarter type", fr)
最初的输出是有希望的:
[1] "lets"
[1] "quarter type"
(注意:在尝试重新创建数据时,由于某种原因我还收到警告:
未知变量:季度类型
,虽然这没有出现在我的原始数据中)
最主要的是我收到一个错误:
Error in resolve_vars(new_groups, tbl_vars(.data)) : unknown variable to group by : t_var
由于来自 Python,我对如何引用列仍然有点困惑。有人可以解释一下我该如何解决我的错误吗?
最佳答案
我们可以使用 dplyr
开发版本中的新定额(即将在0.6.0发布)
summarise_data_categorical <- function(var1, t_var, dt){
var1 <- enquo(var1)
t_var <- enquo(t_var)
v1 <- quo_name(var1)
v2 <- quo_name(t_var)
dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())
}
summarise_data_categorical(lets, quartertype, fr)
#Source: local data frame [65 x 3]
#Groups: quartertype [?]
# quartertype lets count
# <int> <fctr> <int>
#1 1 A 1
#2 1 F 2
#3 1 G 2
#4 1 H 1
#5 1 I 1
#6 1 J 4
#7 1 M 3
#8 1 N 1
#9 1 P 1
#10 1 S 5
# ... with 55 more rows
enquo
具有与 substitute
类似的功能来自base R
通过获取输入参数并将其转换为 quosures
。 one_of
接受一个字符串参数,因此可以使用quo_name
将quosures转换为字符串。里面group_by/summarise/mutate
等等,我们可以通过取消引用来评估 quosure( UQ
或 !!
)
quosures
似乎与 dplyr
配合得很好尽管我们在执行 tidyr
时遇到一些困难功能。以下代码应该适用于完整代码
summarise_data_categorical <- function(var1, t_var, dt){
var1 <- enquo(var1)
t_var <- enquo(t_var)
v1 <- quo_name(var1)
v2 <- quo_name(t_var)
Summ_func <- dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())
count_table <- Summ_func %>%
spread_(v2, "count")
freq <- Summ_func %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)
freq_table <- freq %>%
spread_(v2, "freq")
freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes_string(x= v2 , y = "freq", colour= v1))
results <- list(count_table, freq_table, freq_chart)
results
}
summarise_data_categorical(lets, quartertype, fr)
#[[1]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <int> <int> <int> <int>
#1 A NA NA 1 2
#2 B 2 NA NA 1
#3 C 1 5 1 2
#4 E 1 1 NA NA
#5 G NA 1 2 2
#6 H 1 NA 1 1
#7 I NA 1 1 2
#8 J 2 1 1 1
#9 K 1 1 2 1
#10 L NA 2 NA NA
# ... with 14 more rows
#[[2]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <dbl> <dbl> <dbl> <dbl>
#1 A NA NA 3.1 9.5
#2 B 8.7 NA NA 4.8
#3 C 4.3 20.8 3.1 9.5
#4 E 4.3 4.2 NA NA
#5 G NA 4.2 6.2 9.5
#6 H 4.3 NA 3.1 4.8
#7 I NA 4.2 3.1 9.5
#8 J 8.7 4.2 3.1 4.8
#9 K 4.3 4.2 6.2 4.8
#10 L NA 8.3 NA NA
## ... with 14 more rows
#[[3]]
关于r - 如何将列名传递给函数 dplyr,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43438001/
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有一个数据( df_1 ): df_1 % select_at(.vars = 'var_1') var_1 1 99.47262 10 25.91552 没关系。但: df_1
我正在尝试安装dplyr软件包,但收到一条错误消息,提示“库(dplyr)中存在错误:没有名为dplyr的软件包”。我正在使用窗口系统和Ri386 3.5.2。我尝试按照其他人的建议使用代码insta
假设我想以并行方式申请 myfunction到 myDataFrame 的每一行.假设 otherDataFrame是一个包含两列的数据框:COLUNM1_odf和 COLUMN2_odf出于某些原因
我目前正在构建一个包,我想知道是否有办法调用 %>%来自 dplyr 的操作符,而无需实际附加 dplyr 包。例如,对于从包中导出的任何函数,您可以使用双冒号 ( :: ) 调用它。所以如果我想使用
library(dplyr) mtcars %>% group_by(vs) %>% do(tt=t.test(mpg~am, data=.)) %>% mutate(t=tt$statist
我正在尝试为一组标准曲线构建一系列线性模型。 目前这段代码正在产生我想要的输出(每个线性模型的截距和斜率): slopes % group_by(plate, col, row, conc_ug_mL
我正在寻找替换我的一些使用 dplyr::do 的 R 代码,因为这个函数很快就会被弃用。我的很多工作都需要创建分层 CDF 图。使用 dply:do 时,我分层的变量作为变量传递给结果数据框,然后我
问题 我正在尝试使用 dplyr::mutate()和 dplyr::case_when()在数据框中创建新的数据列,该列使用存储在另一个对象(“查找列表”)中的数据填充,并基于数据框中列中的信息。
最近我发现了很棒的 dplyr.spark.hive启用 dplyr 的软件包前端操作 spark或 hive后端。 在包的 README 中有关于如何安装此包的信息: options(repos =
我正在尝试在 dplyr 链中使用 data.frame 两次。这是一个给出错误的简单示例 df % group_by(Type) %>% summarize(X=n()) %>% mu
当我浏览答案时 here , 我找到了 this solution与 data.frame 完全符合预期. library(dplyr) # dplyr_0.4.3 library(data.tab
我的数据来自一个数据库,根据我运行 SQL 查询的时间,该数据库可能包含一周到另一周不同的 POS 值。 不知道哪些值将在变量中使得自动创建报告变得非常困难。 我的数据如下所示: sample % p
我想定义与“扫帚”包中类似的功能 library(dplyr) library(broom) mtcars %>% group_by(am) %>% do(model = lm(mpg ~ w
set.seed(123) df % group_by(id) %>% mutate(roll.sum = c(x[1:4], zoo::rollapply(x, 5, sum))) # Groups
先来个样本数据 set.seed(123) dat 1 -4 2 6 3 -2 4
我有一个带列的数据框 x1, x2, group我想生成一个带有额外列的新数据框 rank表示x1的顺序在其组中。 有相关问题here ,但已接受的答案似乎不再有效。 到这里为止,很好: librar
我有一个示例 df,如下所示: d% group_by(CaseNo) %>% arrange(desc(Submissiondate)) %>% dplyr::mutate(rank = row_n
我有一个数据框,其中包含一些数据输入错误。 我希望将每组的这些异常值替换为每组最常见的值。 我的数据如下: df % group_by(CODE) %>% mutate(across(c(DOSAGE
我是一名优秀的程序员,十分优秀!