gpt4 book ai didi

r - 如何将列名传递给函数 dplyr

转载 作者:行者123 更新时间:2023-12-01 19:21:29 26 4
gpt4 key购买 nike

我正在尝试创建一个简单的汇总函数,以加快 R Markdown 文件中使用的多列数据的报告速度。

var1 是数据的分类列,t_var 是表示数据四分之一的整数,dt 是完整数据。

summarise_data_categorical <- function(var1, t_var, dt){

print(var1)
print(t_var)

#Select the columns to aggregate
group_func <- dt %>%
select(one_of(t_var, var1)) %>%
group_by(t_var,var1)

#create simple count summary
count_table <- group_func %>%
summarise(count = n()) %>%
spread(t_var, count)

#create a frequency version of the same table...
freq <- dt %>%
select(t_var, var1) %>%
group_by(t_var,var1) %>%
summarise(count = n()) %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)

#Present that table
freq_table <- freq %>%
spread(t_var, freq)

#Create the chart to do the same thing..
freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes(x=t_var, y = freq, colour=var1))

#Compile outputs as a list
results <- list(count_table, freq_table, freq_chart)

#Return list
results

}

假设我有一个框架:

fr <- data.frame(lets = sample(LETTERS, 100, replace=TRUE),
`quarter type` = sample(1:4, 100, replace=TRUE))

如果我运行该函数,则:

summarise_data_categorical("lets", "quarter type", fr)

最初的输出是有希望的:

[1] "lets"
[1] "quarter type"

(注意:在尝试重新创建数据时,由于某种原因我还收到警告:

未知变量:季度类型,虽然这没有出现在我的原始数据中)

最主要的是我收到一个错误:

Error in resolve_vars(new_groups, tbl_vars(.data)) : unknown variable to group by : t_var

由于来自 Python,我对如何引用列仍然有点困惑。有人可以解释一下我该如何解决我的错误吗?

最佳答案

我们可以使用 dplyr 开发版本中的新定额(即将在0.6.0发布)

summarise_data_categorical <- function(var1, t_var, dt){

var1 <- enquo(var1)
t_var <- enquo(t_var)
v1 <- quo_name(var1)
v2 <- quo_name(t_var)

dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())

}
summarise_data_categorical(lets, quartertype, fr)
#Source: local data frame [65 x 3]
#Groups: quartertype [?]

# quartertype lets count
# <int> <fctr> <int>
#1 1 A 1
#2 1 F 2
#3 1 G 2
#4 1 H 1
#5 1 I 1
#6 1 J 4
#7 1 M 3
#8 1 N 1
#9 1 P 1
#10 1 S 5
# ... with 55 more rows

enquo具有与 substitute 类似的功能来自base R通过获取输入参数并将其转换为 quosuresone_of接受一个字符串参数,因此可以使用quo_name将quosures转换为字符串。里面group_by/summarise/mutate等等,我们可以通过取消引用来评估 quosure( UQ!! )

<小时/>

quosures似乎与 dplyr 配合得很好尽管我们在执行 tidyr 时遇到一些困难功能。以下代码应该适用于完整代码

 summarise_data_categorical <- function(var1, t_var, dt){

var1 <- enquo(var1)
t_var <- enquo(t_var)

v1 <- quo_name(var1)
v2 <- quo_name(t_var)

Summ_func <- dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())

count_table <- Summ_func %>%
spread_(v2, "count")

freq <- Summ_func %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)

freq_table <- freq %>%
spread_(v2, "freq")

freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes_string(x= v2 , y = "freq", colour= v1))

results <- list(count_table, freq_table, freq_chart)
results

}
summarise_data_categorical(lets, quartertype, fr)
#[[1]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <int> <int> <int> <int>
#1 A NA NA 1 2
#2 B 2 NA NA 1
#3 C 1 5 1 2
#4 E 1 1 NA NA
#5 G NA 1 2 2
#6 H 1 NA 1 1
#7 I NA 1 1 2
#8 J 2 1 1 1
#9 K 1 1 2 1
#10 L NA 2 NA NA
# ... with 14 more rows

#[[2]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <dbl> <dbl> <dbl> <dbl>
#1 A NA NA 3.1 9.5
#2 B 8.7 NA NA 4.8
#3 C 4.3 20.8 3.1 9.5
#4 E 4.3 4.2 NA NA
#5 G NA 4.2 6.2 9.5
#6 H 4.3 NA 3.1 4.8
#7 I NA 4.2 3.1 9.5
#8 J 8.7 4.2 3.1 4.8
#9 K 4.3 4.2 6.2 4.8
#10 L NA 8.3 NA NA
## ... with 14 more rows

#[[3]]

enter image description here

关于r - 如何将列名传递给函数 dplyr,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43438001/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com