- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用斯坦福词性标注器和 NER 编写一个关键字提取程序。对于关键字提取,我只对专有名词感兴趣。这是基本方法
示例代码
docText="'Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London"
words = re.split("\W+",docText)
stops = set(stopwords.words("english"))
#remove stop words from the list
words = [w for w in words if w not in stops and len(w) > 2]
# Stemming
pstem = PorterStemmer()
words = [pstem.stem(w) for w in words]
nounsWeWant = set(['NN' ,'NNS', 'NNP', 'NNPS'])
finalWords = []
stn = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
stp = StanfordPOSTagger('english-bidirectional-distsim.tagger')
for w in words:
if stp.tag([w.lower()])[0][1] not in nounsWeWant:
finalWords.append(w.lower())
else:
finalWords.append(w)
finalString = " ".join(finalWords)
print finalString
tagged = stn.tag(finalWords)
print tagged
这给了我
Jack Frost work Boe Compani manag aircraft crew London
[(u'Jack', u'PERSON'), (u'Frost', u'PERSON'), (u'work', u'O'), (u'Boe', u'O'), (u'Compani', u'O'), (u'manag', u'O'), (u'aircraft', u'O'), (u'crew', u'O'), (u'London', u'LOCATION')]
很明显,我不希望波音公司被阻止。也不是公司。我需要对这些词进行词干处理,因为我的输入可能包含诸如 Performing
之类的术语。我发现像 Performing
这样的词会被 NER 识别为专有名词,因此可以归类为 Organization
。因此,首先我将所有单词词干并转换为小写。然后我检查该词的词性标签是否是名词。如果是这样,我保持原样。如果不是,我会将单词转换为小写并将其添加到将传递给 NER 的最终单词列表中。
知道如何避免专有名词的词干吗?
最佳答案
使用完整的斯坦福 CoreNLP 管道来处理您的 NLP 工具链。避免使用自己的分词器、清理器、POS 标记器等。它不能与 NER 工具很好地配合。
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
unzip http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
cd stanford-corenlp-full-2015-12-09
echo "Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London" > test.txt
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt
cat test.txt.out
[输出]:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
<document>
<sentences>
<sentence id="1">
<tokens>
<token id="1">
<word>Jack</word>
<lemma>Jack</lemma>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>4</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>PERSON</NER>
<Speaker>PER0</Speaker>
</token>
<token id="2">
<word>Frost</word>
<lemma>Frost</lemma>
<CharacterOffsetBegin>5</CharacterOffsetBegin>
<CharacterOffsetEnd>10</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>PERSON</NER>
<Speaker>PER0</Speaker>
</token>
<token id="3">
<word>works</word>
<lemma>work</lemma>
<CharacterOffsetBegin>11</CharacterOffsetBegin>
<CharacterOffsetEnd>16</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="4">
<word>for</word>
<lemma>for</lemma>
<CharacterOffsetBegin>17</CharacterOffsetBegin>
<CharacterOffsetEnd>20</CharacterOffsetEnd>
<POS>IN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="5">
<word>Boeing</word>
<lemma>Boeing</lemma>
<CharacterOffsetBegin>21</CharacterOffsetBegin>
<CharacterOffsetEnd>27</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
<Speaker>PER0</Speaker>
</token>
<token id="6">
<word>Company</word>
<lemma>Company</lemma>
<CharacterOffsetBegin>28</CharacterOffsetBegin>
<CharacterOffsetEnd>35</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
<Speaker>PER0</Speaker>
</token>
<token id="7">
<word>.</word>
<lemma>.</lemma>
<CharacterOffsetBegin>35</CharacterOffsetBegin>
<CharacterOffsetEnd>36</CharacterOffsetEnd>
<POS>.</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
</tokens>
<parse>(ROOT (S (NP (NNP Jack) (NNP Frost)) (VP (VBZ works) (PP (IN for) (NP (NNP Boeing) (NNP Company)))) (. .))) </parse>
<dependencies type="basic-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod:for">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-ccprocessed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="3">works</dependent>
</dep>
<dep type="compound">
<governor idx="2">Frost</governor>
<dependent idx="1">Jack</dependent>
</dep>
<dep type="nsubj">
<governor idx="3">works</governor>
<dependent idx="2">Frost</dependent>
</dep>
<dep type="case">
<governor idx="6">Company</governor>
<dependent idx="4">for</dependent>
</dep>
<dep type="compound">
<governor idx="6">Company</governor>
<dependent idx="5">Boeing</dependent>
</dep>
<dep type="nmod:for">
<governor idx="3">works</governor>
<dependent idx="6">Company</dependent>
</dep>
<dep type="punct">
<governor idx="3">works</governor>
<dependent idx="7">.</dependent>
</dep>
</dependencies>
</sentence>
<sentence id="2">
<tokens>
<token id="1">
<word>He</word>
<lemma>he</lemma>
<CharacterOffsetBegin>37</CharacterOffsetBegin>
<CharacterOffsetEnd>39</CharacterOffsetEnd>
<POS>PRP</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="2">
<word>manages</word>
<lemma>manage</lemma>
<CharacterOffsetBegin>40</CharacterOffsetBegin>
<CharacterOffsetEnd>47</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="3">
<word>5</word>
<lemma>5</lemma>
<CharacterOffsetBegin>48</CharacterOffsetBegin>
<CharacterOffsetEnd>49</CharacterOffsetEnd>
<POS>CD</POS>
<NER>NUMBER</NER>
<NormalizedNER>5.0</NormalizedNER>
<Speaker>PER0</Speaker>
</token>
<token id="4">
<word>aircraft</word>
<lemma>aircraft</lemma>
<CharacterOffsetBegin>50</CharacterOffsetBegin>
<CharacterOffsetEnd>58</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="5">
<word>and</word>
<lemma>and</lemma>
<CharacterOffsetBegin>59</CharacterOffsetBegin>
<CharacterOffsetEnd>62</CharacterOffsetEnd>
<POS>CC</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="6">
<word>their</word>
<lemma>they</lemma>
<CharacterOffsetBegin>63</CharacterOffsetBegin>
<CharacterOffsetEnd>68</CharacterOffsetEnd>
<POS>PRP$</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="7">
<word>crew</word>
<lemma>crew</lemma>
<CharacterOffsetBegin>69</CharacterOffsetBegin>
<CharacterOffsetEnd>73</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="8">
<word>in</word>
<lemma>in</lemma>
<CharacterOffsetBegin>74</CharacterOffsetBegin>
<CharacterOffsetEnd>76</CharacterOffsetEnd>
<POS>IN</POS>
<NER>O</NER>
<Speaker>PER0</Speaker>
</token>
<token id="9">
<word>London</word>
<lemma>London</lemma>
<CharacterOffsetBegin>77</CharacterOffsetBegin>
<CharacterOffsetEnd>83</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>LOCATION</NER>
<Speaker>PER0</Speaker>
</token>
</tokens>
<parse>(ROOT (S (NP (PRP He)) (VP (VBZ manages) (NP (NP (CD 5) (NN aircraft)) (CC and) (NP (NP (PRP$ their) (NN crew)) (PP (IN in) (NP (NNP London)))))))) </parse>
<dependencies type="basic-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="conj">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="conj:and">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod:in">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
<dependencies type="collapsed-ccprocessed-dependencies">
<dep type="root">
<governor idx="0">ROOT</governor>
<dependent idx="2">manages</dependent>
</dep>
<dep type="nsubj">
<governor idx="2">manages</governor>
<dependent idx="1">He</dependent>
</dep>
<dep type="nummod">
<governor idx="4">aircraft</governor>
<dependent idx="3">5</dependent>
</dep>
<dep type="dobj">
<governor idx="2">manages</governor>
<dependent idx="4">aircraft</dependent>
</dep>
<dep type="cc">
<governor idx="4">aircraft</governor>
<dependent idx="5">and</dependent>
</dep>
<dep type="nmod:poss">
<governor idx="7">crew</governor>
<dependent idx="6">their</dependent>
</dep>
<dep type="dobj" extra="true">
<governor idx="2">manages</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="conj:and">
<governor idx="4">aircraft</governor>
<dependent idx="7">crew</dependent>
</dep>
<dep type="case">
<governor idx="9">London</governor>
<dependent idx="8">in</dependent>
</dep>
<dep type="nmod:in">
<governor idx="7">crew</governor>
<dependent idx="9">London</dependent>
</dep>
</dependencies>
</sentence>
</sentences>
<coreference>
<coreference>
<mention representative="true">
<sentence>1</sentence>
<start>1</start>
<end>3</end>
<head>2</head>
<text>Jack Frost</text>
</mention>
<mention>
<sentence>2</sentence>
<start>1</start>
<end>2</end>
<head>1</head>
<text>He</text>
</mention>
</coreference>
</coreference>
</document>
</root>
或者获取 json 输出:
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt -outputFormat json
如果您确实需要 python 包装器,请参阅 https://github.com/smilli/py-corenlp
$ cd stanford-corenlp-full-2015-12-09
$ export CLASSPATH=protobuf.jar:joda-time.jar:jollyday.jar:xom-1.2.10.jar:stanford-corenlp-3.6.0.jar:stanford-corenlp-3.6.0-models.jar:slf4j-api.jar
$ java -mx4g edu.stanford.nlp.pipeline.StanfordCoreNLPServer &
cd
$ git clone https://github.com/smilli/py-corenlp.git
$ cd py-corenlp
$ python
>>> from corenlp import StanfordCoreNLP
>>> nlp = StanfordCoreNLP('http://localhost:9000')
>>> text = ("Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London")
>>> output = nlp.annotate(text, properties={'annotators': 'tokenize,ssplit,pos,ner', 'outputFormat': 'json'})
>>> output
{u'sentences': [{u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 0, u'tokens': [{u'index': 1, u'word': u'Jack', u'lemma': u'Jack', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 4, u'characterOffsetBegin': 0, u'originalText': u'Jack', u'ner': u'PERSON', u'before': u''}, {u'index': 2, u'word': u'Frost', u'lemma': u'Frost', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 10, u'characterOffsetBegin': 5, u'originalText': u'Frost', u'ner': u'PERSON', u'before': u' '}, {u'index': 3, u'word': u'works', u'lemma': u'work', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 16, u'characterOffsetBegin': 11, u'originalText': u'works', u'ner': u'O', u'before': u' '}, {u'index': 4, u'word': u'for', u'lemma': u'for', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 20, u'characterOffsetBegin': 17, u'originalText': u'for', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'Boeing', u'lemma': u'Boeing', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 27, u'characterOffsetBegin': 21, u'originalText': u'Boeing', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 6, u'word': u'Company', u'lemma': u'Company', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 35, u'characterOffsetBegin': 28, u'originalText': u'Company', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 7, u'word': u'.', u'lemma': u'.', u'after': u' ', u'pos': u'.', u'characterOffsetEnd': 36, u'characterOffsetBegin': 35, u'originalText': u'.', u'ner': u'O', u'before': u''}]}, {u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 1, u'tokens': [{u'index': 1, u'word': u'He', u'lemma': u'he', u'after': u' ', u'pos': u'PRP', u'characterOffsetEnd': 39, u'characterOffsetBegin': 37, u'originalText': u'He', u'ner': u'O', u'before': u' '}, {u'index': 2, u'word': u'manages', u'lemma': u'manage', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 47, u'characterOffsetBegin': 40, u'originalText': u'manages', u'ner': u'O', u'before': u' '}, {u'index': 3, u'after': u' ', u'word': u'5', u'lemma': u'5', u'normalizedNER': u'5.0', u'pos': u'CD', u'characterOffsetEnd': 49, u'characterOffsetBegin': 48, u'originalText': u'5', u'ner': u'NUMBER', u'before': u' '}, {u'index': 4, u'word': u'aircraft', u'lemma': u'aircraft', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 58, u'characterOffsetBegin': 50, u'originalText': u'aircraft', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'and', u'lemma': u'and', u'after': u' ', u'pos': u'CC', u'characterOffsetEnd': 62, u'characterOffsetBegin': 59, u'originalText': u'and', u'ner': u'O', u'before': u' '}, {u'index': 6, u'word': u'their', u'lemma': u'they', u'after': u' ', u'pos': u'PRP$', u'characterOffsetEnd': 68, u'characterOffsetBegin': 63, u'originalText': u'their', u'ner': u'O', u'before': u' '}, {u'index': 7, u'word': u'crew', u'lemma': u'crew', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 73, u'characterOffsetBegin': 69, u'originalText': u'crew', u'ner': u'O', u'before': u' '}, {u'index': 8, u'word': u'in', u'lemma': u'in', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 76, u'characterOffsetBegin': 74, u'originalText': u'in', u'ner': u'O', u'before': u' '}, {u'index': 9, u'word': u'London', u'lemma': u'London', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 83, u'characterOffsetBegin': 77, u'originalText': u'London', u'ner': u'LOCATION', u'before': u' '}]}]}
>>> annotated_sent0 = output['sentences'][0]
>>> for token in annotated_sent0['tokens']:
... print token['word'], token['lemma'], token['pos'], token['ner']
...
Jack Jack NNP PERSON
Frost Frost NNP PERSON
works work VBZ O
for for IN O
Boeing Boeing NNP ORGANIZATION
Company Company NNP ORGANIZATION
. . . O
这可能是您想要的输出:
>>> " ".join(token['lemma'] for token in annotated_sent0['tokens'])
Jack Frost work for Boeing Company
>>> " ".join(token['word'] for token in annotated_sent0['tokens'])
Jack Frost works for Boeing Company
如果你想要一个 NLTK 附带的包装器,那么你必须再等一会儿,直到 this issue已解决;P
关于python - nltk : How to prevent stemming of proper nouns,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34455749/
我正在寻找克罗地亚语词干算法的实现。理想情况下使用 Java,但我也接受任何其他语言。 是否有一个讲英语的开发人员社区正在为克罗地亚语开发搜索应用程序? 谢谢 最佳答案 斯拉夫语言高度inflecti
我希望使用基于日期时间的 matplotlib 绘制一个主干。但似乎发生了错误:示例代码: import matplotlib.pyplot as plt from dateutil import p
所以基本上我有两个具有相同数字(16 位数字)的 .txt 文件,前 8 位数字全部相同(例如 12345678),然后接下来的 8 位数字是随机的(例如 38462943)。我一直在尝试做的是将两个
以下问题看起来很像 SO 上已有的许多相关问题(我已经通读了它们,但我的问题略有不同并且仍然存在)。 我使用 stem 库在 Python 3.6.1 中编写了以下代码(在 macOS Sierra
我正在尝试获取 To Russia With Love tutoial来自 Stem 项目工作。 from io import StringIO import socket import urllib
作为代码的一部分,我的功能如下: def match_output(orig_path: Path,lines: Iterable[str],stem: str, delim: str,delim_p
我在将 tor 与 python 结合使用时遇到了一些问题,我不太清楚从这里该何去何从。 系统/包:Windows 10 Python 3.8(通过 jupyter 实验室) 茎 tor(tor.ex
我想将 EELS 数据立方体的强度与厚度图相乘。我尝试使用简单的数学命令,但我只获得了第一个切片的结果。我认为计算就像执行 Result(x,y,E) = SI(x,y,E) * Thickness(
我看过其他关于此问题的帖子,但我仍然无法让它发挥作用。 http://snowball.tartarus.org/dist/libstemmer_java.tgz <<- 这包含 porter2 算法
我正在处理一些 nlp 任务。我的输入是法语文本,因此在我的上下文中只能使用 Snowball Stemmer。但是,不幸的是,它一直给我糟糕的词干,因为它甚至不会删除 plural "s" 或 si
如何在没有标记(仅 Steam 线)的情况下绘制 Steam 图?。它在绘制非常长的信号阵列时特别有用。 谢谢! 最佳答案 您可以简单地将标记设置为空: import matplotlib.pyplo
我正在尝试设置 Makefile 以根据目标文件扩展名构建静态 (.a) 和动态 (.so) 库。 我以前只将以下 Makefile 用于静态库: NAME := config LIB :=
我知道词干提取和词形还原如下: 词干 - 将单词转换成不变的部分;有趣,娱乐 - 有趣 lemmatizing - 将单词转换为字典形式;有趣的,逗乐的 我可以理解为什么要使用词形还原。但我不明白做词
我正在使用 Boost 文件系统库。 我有一条路 boost::filesystem::path P("/foo/bar.baz"); 我想将路径 p 的词干部分修改为“bar_quz”,因此路径 P
我正在尝试使用斯坦福词性标注器和 NER 编写一个关键字提取程序。对于关键字提取,我只对专有名词感兴趣。这是基本方法 通过删除字母以外的任何内容来清理数据 删除停用词 对每个单词进行词干 确定每个单词
我对 python 很陌生,没有真正的编程知识。在我目前的工作中,我被要求从大约 500 多个文件中获取文本形式的数据并将它们绘制出来。我在一定程度上理解绘图,但我似乎无法弄清楚如何以易于选择特定部分
我在远程服务器 (Ubuntu) 上运行 Tor,端口为 9150,控制端口为 9151。我已确认两者都在通过 netstat -ant 运行。 这是我的代码,它引发了 SOCKS5Error: 0x
我正在使用 stem 来控制使用 stem.process.launch_tor_with_config 创建的 tor 节点。我还创建了一个在上述进程的控制端口上运行的 stem.control.C
关闭。这个问题需要更多 focused .它目前不接受答案。 想要改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this q
我一直在尝试将 InceptionResnetV2 中的 Keras implementation 模型摘要与他们论文中指定的模型摘要进行比较,当涉及到 filter_concat block 时,它
我是一名优秀的程序员,十分优秀!