- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 L1 缓存中为英特尔处理器上的以下功能获得全部带宽
float triad(float *x, float *y, float *z, const int n) {
float k = 3.14159f;
for(int i=0; i<n; i++) {
z[i] = x[i] + k*y[i];
}
}
.L2:
vmovaps ymm1, [rdi+rax]
vfmadd231ps ymm1, ymm2, [rsi+rax]
vmovaps [rdx+rax], ymm1
add rax, 32
jne .L2
y[i] = y[i] +k*x[i]
)。我设法或多或少地自己重现了他的代码(实际上他在广播时在 FMA3 示例中有一个小错误)。除了 FMA4 和 FMA3 之外,他在表中给出了每个处理器的指令大小计数、融合操作、执行端口。我曾尝试为 FMA3 自己制作这张 table 。
ports
size μops-fused 0 1 2 3 4 5 6 7
vmovaps 5 1 ½ ½
vfmadd231ps 6 1 ½ ½ ½ ½
vmovaps 5 1 1 1
add 4 ½ ½
jne 2 ½ ½
--------------------------------------------------------------
total 22 4 ½ ½ 1 1 1 0 1 1
add
和
jne
指令有半个 μop 是它们融合成一个宏操作(不要与仍然使用多个端口的 μop 融合混淆)并且只需要端口 6 和一个 μop。
vfmadd231ps
指令可以使用端口0或端口1。我选择了端口0。负载
vmovaps
可以使用端口 2 或 3。我选择了 2 并且有
vfmadd231ps
使用端口 3 .. 为了与 Agner Fog 的表保持一致,并且因为我认为说一条可以去不同端口的指令平均分配给每个 1/2 的时间更有意义,我分配了 1/2 用于端口
vmovaps
和
vmadd231ps
可以去。
[base + offset]
之类的简单操作。而不是
[base + index]
.在
Intel optimization reference manual我发现的唯一一件事是对 port7 的评论,上面写着“Simple_AGU”,但没有定义简单的含义。但是后来在
IACA的评论中发现了Iwillnotexist Idonotexist六个月前,英特尔的一名员工在 2014 年 3 月 11 日写道:
Port7 AGU can only work on stores with simple memory address (no index register).
vmovaps ymm1, [rdi + r9 + 32*i]
vfmadd231ps ymm1, ymm2, [rsi + r9 + 32*i]
vmovaps [r9 + 32*i], ymm1
add r9, 32*unroll
cmp r9, rcx
jne .L2
vmadd231ps
不与您可以从 IACA 看到的负载熔断。它还需要额外的
cmp
我原来的功能没有的指令。所以商店少用了一个微操作,但
cmp
(或者更确切地说是
add
因为
cmp
宏与
jne
融合)还需要一个。 IACA 报告的块吞吐量为 1.5。在实践中,这只能达到峰值的 57%。
vmadd231ps
的方法指令也与负载熔断。这只能使用静态数组来完成,像这样寻址 [绝对 32 位地址 + 索引]。
Evgeny Kluev original suggested this .
vmovaps ymm1, [src1_end + rax]
vfmadd231ps ymm1, ymm2, [src2_end + rax]
vmovaps [dst_end + rax], ymm1
add rax, 32
jl .L2
src1_end
,
src2_end
, 和
dst_end
是静态数组的结束地址。
double frequency = 1.3;
将 1.3 替换为处理器的任何运行(非标称)频率(如果 i5-4250U 在 BIOS 中禁用涡轮增压,则为 1.3 GHz)。
nasm -f elf64 triad_sse_asm.asm
nasm -f elf64 triad_avx_asm.asm
nasm -f elf64 triad_fma_asm.asm
g++ -m64 -lrt -O3 -mfma tests.cpp triad_fma_asm.o -o tests_fma
g++ -m64 -lrt -O3 -mavx tests.cpp triad_avx_asm.o -o tests_avx
g++ -m64 -lrt -O3 -msse2 tests.cpp triad_sse_asm.o -o tests_sse
#include <x86intrin.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#define TIMER_TYPE CLOCK_REALTIME
extern "C" float triad_sse_asm_repeat(float *x, float *y, float *z, const int n, int repeat);
extern "C" float triad_sse_asm_repeat_unroll16(float *x, float *y, float *z, const int n, int repeat);
extern "C" float triad_avx_asm_repeat(float *x, float *y, float *z, const int n, int repeat);
extern "C" float triad_avx_asm_repeat_unroll16(float *x, float *y, float *z, const int n, int repeat);
extern "C" float triad_fma_asm_repeat(float *x, float *y, float *z, const int n, int repeat);
extern "C" float triad_fma_asm_repeat_unroll16(float *x, float *y, float *z, const int n, int repeat);
#if (defined(__FMA__))
float triad_fma_repeat(float *x, float *y, float *z, const int n, int repeat) {
float k = 3.14159f;
int r;
for(r=0; r<repeat; r++) {
int i;
__m256 k4 = _mm256_set1_ps(k);
for(i=0; i<n; i+=8) {
_mm256_store_ps(&z[i], _mm256_fmadd_ps(k4, _mm256_load_ps(&y[i]), _mm256_load_ps(&x[i])));
}
}
}
#elif (defined(__AVX__))
float triad_avx_repeat(float *x, float *y, float *z, const int n, int repeat) {
float k = 3.14159f;
int r;
for(r=0; r<repeat; r++) {
int i;
__m256 k4 = _mm256_set1_ps(k);
for(i=0; i<n; i+=8) {
_mm256_store_ps(&z[i], _mm256_add_ps(_mm256_load_ps(&x[i]), _mm256_mul_ps(k4, _mm256_load_ps(&y[i]))));
}
}
}
#else
float triad_sse_repeat(float *x, float *y, float *z, const int n, int repeat) {
float k = 3.14159f;
int r;
for(r=0; r<repeat; r++) {
int i;
__m128 k4 = _mm_set1_ps(k);
for(i=0; i<n; i+=4) {
_mm_store_ps(&z[i], _mm_add_ps(_mm_load_ps(&x[i]), _mm_mul_ps(k4, _mm_load_ps(&y[i]))));
}
}
}
#endif
double time_diff(timespec start, timespec end)
{
timespec temp;
if ((end.tv_nsec-start.tv_nsec)<0) {
temp.tv_sec = end.tv_sec-start.tv_sec-1;
temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;
} else {
temp.tv_sec = end.tv_sec-start.tv_sec;
temp.tv_nsec = end.tv_nsec-start.tv_nsec;
}
return (double)temp.tv_sec + (double)temp.tv_nsec*1E-9;
}
int main () {
int bytes_per_cycle = 0;
double frequency = 1.3; //Haswell
//double frequency = 3.6; //IB
//double frequency = 2.66; //Core2
#if (defined(__FMA__))
bytes_per_cycle = 96;
#elif (defined(__AVX__))
bytes_per_cycle = 48;
#else
bytes_per_cycle = 24;
#endif
double peak = frequency*bytes_per_cycle;
const int n =2048;
float* z2 = (float*)_mm_malloc(sizeof(float)*n, 64);
char *mem = (char*)_mm_malloc(1<<18,4096);
char *a = mem;
char *b = a+n*sizeof(float);
char *c = b+n*sizeof(float);
float *x = (float*)a;
float *y = (float*)b;
float *z = (float*)c;
for(int i=0; i<n; i++) {
x[i] = 1.0f*i;
y[i] = 1.0f*i;
z[i] = 0;
}
int repeat = 1000000;
timespec time1, time2;
#if (defined(__FMA__))
triad_fma_repeat(x,y,z2,n,repeat);
#elif (defined(__AVX__))
triad_avx_repeat(x,y,z2,n,repeat);
#else
triad_sse_repeat(x,y,z2,n,repeat);
#endif
while(1) {
double dtime, rate;
clock_gettime(TIMER_TYPE, &time1);
#if (defined(__FMA__))
triad_fma_asm_repeat(x,y,z,n,repeat);
#elif (defined(__AVX__))
triad_avx_asm_repeat(x,y,z,n,repeat);
#else
triad_sse_asm_repeat(x,y,z,n,repeat);
#endif
clock_gettime(TIMER_TYPE, &time2);
dtime = time_diff(time1,time2);
rate = 3.0*1E-9*sizeof(float)*n*repeat/dtime;
printf("unroll1 rate %6.2f GB/s, efficency %6.2f%%, error %d\n", rate, 100*rate/peak, memcmp(z,z2, sizeof(float)*n));
clock_gettime(TIMER_TYPE, &time1);
#if (defined(__FMA__))
triad_fma_repeat(x,y,z,n,repeat);
#elif (defined(__AVX__))
triad_avx_repeat(x,y,z,n,repeat);
#else
triad_sse_repeat(x,y,z,n,repeat);
#endif
clock_gettime(TIMER_TYPE, &time2);
dtime = time_diff(time1,time2);
rate = 3.0*1E-9*sizeof(float)*n*repeat/dtime;
printf("intrinsic rate %6.2f GB/s, efficency %6.2f%%, error %d\n", rate, 100*rate/peak, memcmp(z,z2, sizeof(float)*n));
clock_gettime(TIMER_TYPE, &time1);
#if (defined(__FMA__))
triad_fma_asm_repeat_unroll16(x,y,z,n,repeat);
#elif (defined(__AVX__))
triad_avx_asm_repeat_unroll16(x,y,z,n,repeat);
#else
triad_sse_asm_repeat_unroll16(x,y,z,n,repeat);
#endif
clock_gettime(TIMER_TYPE, &time2);
dtime = time_diff(time1,time2);
rate = 3.0*1E-9*sizeof(float)*n*repeat/dtime;
printf("unroll16 rate %6.2f GB/s, efficency %6.2f%%, error %d\n", rate, 100*rate/peak, memcmp(z,z2, sizeof(float)*n));
}
}
global triad_fma_asm_repeat
;RDI x, RSI y, RDX z, RCX n, R8 repeat
;z[i] = y[i] + 3.14159*x[i]
pi: dd 3.14159
;align 16
section .text
triad_fma_asm_repeat:
shl rcx, 2
add rdi, rcx
add rsi, rcx
add rdx, rcx
vbroadcastss ymm2, [rel pi]
;neg rcx
align 16
.L1:
mov rax, rcx
neg rax
align 16
.L2:
vmovaps ymm1, [rdi+rax]
vfmadd231ps ymm1, ymm2, [rsi+rax]
vmovaps [rdx+rax], ymm1
add rax, 32
jne .L2
sub r8d, 1
jnz .L1
vzeroupper
ret
global triad_fma_asm_repeat_unroll16
section .text
triad_fma_asm_repeat_unroll16:
shl rcx, 2
add rcx, rdi
vbroadcastss ymm2, [rel pi]
.L1:
xor rax, rax
mov r9, rdi
mov r10, rsi
mov r11, rdx
.L2:
%assign unroll 32
%assign i 0
%rep unroll
vmovaps ymm1, [r9 + 32*i]
vfmadd231ps ymm1, ymm2, [r10 + 32*i]
vmovaps [r11 + 32*i], ymm1
%assign i i+1
%endrep
add r9, 32*unroll
add r10, 32*unroll
add r11, 32*unroll
cmp r9, rcx
jne .L2
sub r8d, 1
jnz .L1
vzeroupper
ret
global triad_avx_asm_repeat
;RDI x, RSI y, RDX z, RCX n, R8 repeat
pi: dd 3.14159
align 16
section .text
triad_avx_asm_repeat:
shl rcx, 2
add rdi, rcx
add rsi, rcx
add rdx, rcx
vbroadcastss ymm2, [rel pi]
;neg rcx
align 16
.L1:
mov rax, rcx
neg rax
align 16
.L2:
vmulps ymm1, ymm2, [rdi+rax]
vaddps ymm1, ymm1, [rsi+rax]
vmovaps [rdx+rax], ymm1
add rax, 32
jne .L2
sub r8d, 1
jnz .L1
vzeroupper
ret
global triad_avx_asm_repeat2
;RDI x, RSI y, RDX z, RCX n, R8 repeat
;pi: dd 3.14159
align 16
section .text
triad_avx_asm_repeat2:
shl rcx, 2
vbroadcastss ymm2, [rel pi]
align 16
.L1:
xor rax, rax
align 16
.L2:
vmulps ymm1, ymm2, [rdi+rax]
vaddps ymm1, ymm1, [rsi+rax]
vmovaps [rdx+rax], ymm1
add eax, 32
cmp eax, ecx
jne .L2
sub r8d, 1
jnz .L1
vzeroupper
ret
global triad_avx_asm_repeat_unroll16
align 16
section .text
triad_avx_asm_repeat_unroll16:
shl rcx, 2
add rcx, rdi
vbroadcastss ymm2, [rel pi]
align 16
.L1:
xor rax, rax
mov r9, rdi
mov r10, rsi
mov r11, rdx
align 16
.L2:
%assign unroll 16
%assign i 0
%rep unroll
vmulps ymm1, ymm2, [r9 + 32*i]
vaddps ymm1, ymm1, [r10 + 32*i]
vmovaps [r11 + 32*i], ymm1
%assign i i+1
%endrep
add r9, 32*unroll
add r10, 32*unroll
add r11, 32*unroll
cmp r9, rcx
jne .L2
sub r8d, 1
jnz .L1
vzeroupper
ret
global triad_sse_asm_repeat
;RDI x, RSI y, RDX z, RCX n, R8 repeat
pi: dd 3.14159
;align 16
section .text
triad_sse_asm_repeat:
shl rcx, 2
add rdi, rcx
add rsi, rcx
add rdx, rcx
movss xmm2, [rel pi]
shufps xmm2, xmm2, 0
;neg rcx
align 16
.L1:
mov rax, rcx
neg rax
align 16
.L2:
movaps xmm1, [rdi+rax]
mulps xmm1, xmm2
addps xmm1, [rsi+rax]
movaps [rdx+rax], xmm1
add rax, 16
jne .L2
sub r8d, 1
jnz .L1
ret
global triad_sse_asm_repeat2
;RDI x, RSI y, RDX z, RCX n, R8 repeat
;pi: dd 3.14159
;align 16
section .text
triad_sse_asm_repeat2:
shl rcx, 2
movss xmm2, [rel pi]
shufps xmm2, xmm2, 0
align 16
.L1:
xor rax, rax
align 16
.L2:
movaps xmm1, [rdi+rax]
mulps xmm1, xmm2
addps xmm1, [rsi+rax]
movaps [rdx+rax], xmm1
add eax, 16
cmp eax, ecx
jne .L2
sub r8d, 1
jnz .L1
ret
global triad_sse_asm_repeat_unroll16
section .text
triad_sse_asm_repeat_unroll16:
shl rcx, 2
add rcx, rdi
movss xmm2, [rel pi]
shufps xmm2, xmm2, 0
.L1:
xor rax, rax
mov r9, rdi
mov r10, rsi
mov r11, rdx
.L2:
%assign unroll 8
%assign i 0
%rep unroll
movaps xmm1, [r9 + 16*i]
mulps xmm1, xmm2,
addps xmm1, [r10 + 16*i]
movaps [r11 + 16*i], xmm1
%assign i i+1
%endrep
add r9, 16*unroll
add r10, 16*unroll
add r11, 16*unroll
cmp r9, rcx
jne .L2
sub r8d, 1
jnz .L1
ret
最佳答案
IACA分析
使用 IACA (the Intel Architecture Code Analyzer)揭示宏操作融合确实发生了,这不是问题。正确的是神秘主义者:问题是商店根本不使用端口 7 .
IACA 报告如下:
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - ../../../tests_fma
Binary Format - 64Bit
Architecture - HSW
Analysis Type - Throughput
Throughput Analysis Report
--------------------------
Block Throughput: 1.55 Cycles Throughput Bottleneck: FrontEnd, PORT2_AGU, PORT3_AGU
Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
---------------------------------------------------------------------------------------
| Cycles | 0.5 0.0 | 0.5 | 1.5 1.0 | 1.5 1.0 | 1.0 | 0.0 | 1.0 | 0.0 |
---------------------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [rdi+rax*1]
| 2 | 0.5 | 0.5 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [rsi+rax*1]
| 2 | | | 0.5 | 0.5 | 1.0 | | | | CP | vmovaps ymmword ptr [rdx+rax*1], ymm1
| 1 | | | | | | | 1.0 | | | add rax, 0x20
| 0F | | | | | | | | | | jnz 0xffffffffffffffec
Total Num Of Uops: 6
Tue, 03/11/2014 - 12:39
一位英特尔员工在
Tue, 03/11/2014 - 23:20
上回复了这条回复。 :
Port7 AGU can only work on stores with simple memory address (no index register). This is why the above analysis doesn't show port7 utilization.
这坚定地解决了为什么没有使用端口 7。
现在,对比上面的 32x 展开循环(事实证明unroll16
实际上应该被称为unroll32
):
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - ../../../tests_fma
Binary Format - 64Bit
Architecture - HSW
Analysis Type - Throughput
Throughput Analysis Report
--------------------------
Block Throughput: 32.00 Cycles Throughput Bottleneck: PORT2_AGU, Port2_DATA, PORT3_AGU, Port3_DATA, Port4, Port7
Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
---------------------------------------------------------------------------------------
| Cycles | 16.0 0.0 | 16.0 | 32.0 32.0 | 32.0 32.0 | 32.0 | 2.0 | 2.0 | 32.0 |
---------------------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
---------------------------------------------------------------------------------
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x20]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x20]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x20], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x40]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x40]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x40], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x60]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x60]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x60], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x80]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x80]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x80], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xa0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xa0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xa0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xc0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xc0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xc0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0xe0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0xe0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0xe0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x100]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x100]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x100], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x120]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x120]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x120], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x140]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x140]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x140], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x160]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x160]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x160], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x180]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x180]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x180], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x1e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x1e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x1e0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x200]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x200]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x200], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x220]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x220]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x220], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x240]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x240]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x240], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x260]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x260]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x260], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x280]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x280]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x280], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x2e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x2e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x2e0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x300]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x300]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x300], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x320]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x320]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x320], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x340]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x340]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x340], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x360]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x360]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x360], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x380]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x380]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x380], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3a0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3a0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3a0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3c0]
| 2^ | 1.0 | | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3c0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3c0], ymm1
| 1 | | | 1.0 1.0 | | | | | | CP | vmovaps ymm1, ymmword ptr [r9+0x3e0]
| 2^ | | 1.0 | | 1.0 1.0 | | | | | CP | vfmadd231ps ymm1, ymm2, ymmword ptr [r10+0x3e0]
| 2^ | | | | | 1.0 | | | 1.0 | CP | vmovaps ymmword ptr [r11+0x3e0], ymm1
| 1 | | | | | | 1.0 | | | | add r9, 0x400
| 1 | | | | | | | 1.0 | | | add r10, 0x400
| 1 | | | | | | 1.0 | | | | add r11, 0x400
| 1 | | | | | | | 1.0 | | | cmp r9, rcx
| 0F | | | | | | | | | | jnz 0xfffffffffffffcaf
Total Num Of Uops: 164
我们在这里看到了商店到端口 7 的微融合和正确调度。
手动分析(见上面的编辑)
我现在可以回答你的第二个问题: 这是否可以不展开,如果可以,怎么做? .答案是不。
我填充了数组x
,y
和z
为下面的实验提供了足够的缓冲区,并将内部循环更改为以下内容:
.L2:
vmovaps ymm1, [rdi+rax] ; 1L
vmovaps ymm0, [rsi+rax] ; 2L
vmovaps [rdx+rax], ymm2 ; S1
add rax, 32 ; ADD
jne .L2 ; JMP
这故意不使用 FMA(仅加载和存储)并且所有加载/存储指令都没有依赖性,因为因此应该没有任何危险,无论阻止它们进入任何执行端口。
然后我测试了第一次和第二次加载(1L
和2L
)、存储(S1
)和添加(A
)的每一个排列,同时在最后留下条件跳转(J
) ,并且对于这些中的每一个,我测试了x
的所有可能的偏移组合。 ,y
和z
按 0 或 -32 字节(纠正在add rax, 32
索引之一之前重新排序r+r
会导致加载或存储定位到错误地址的事实)。循环对齐到 32 个字节。测试在 2.4GHz i7-4700MQ 上运行,通过echo '0' > /sys/devices/system/cpu/cpufreq/boost
禁用 TurboBoost在 Linux 下,频率常数使用 2.4。以下是效率结果(最多 24 个):
Cases: 0 1 2 3 4 5 6 7
L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S L1 L2 S
-0 -0 -0 -0 -0 -32 -0 -32 -0 -0 -32 -32 -32 -0 -0 -32 -0 -32 -32 -32 -0 -32 -32 -32
________________________________________________________________________________________________
12SAJ: 65.34% 65.34% 49.63% 65.07% 49.70% 65.05% 49.22% 65.07%
12ASJ: 48.59% 64.48% 48.74% 49.69% 48.75% 49.69% 48.99% 48.60%
1A2SJ: 49.69% 64.77% 48.67% 64.06% 49.69% 49.69% 48.94% 49.69%
1AS2J: 48.61% 64.66% 48.73% 49.71% 48.77% 49.69% 49.05% 48.74%
1S2AJ: 49.66% 65.13% 49.49% 49.66% 48.96% 64.82% 49.02% 49.66%
1SA2J: 64.44% 64.69% 49.69% 64.34% 49.69% 64.41% 48.75% 64.14%
21SAJ: 65.33%* 65.34% 49.70% 65.06% 49.62% 65.07% 49.22% 65.04%
21ASJ: Hypothetically =12ASJ
2A1SJ: Hypothetically =1A2SJ
2AS1J: Hypothetically =1AS2J
2S1AJ: Hypothetically =1S2AJ
2SA1J: Hypothetically =1SA2J
S21AJ: 48.91% 65.19% 49.04% 49.72% 49.12% 49.63% 49.21% 48.95%
S2A1J: Hypothetically =S1A2J
SA21J: Hypothetically =SA12J
SA12J: 64.69% 64.93% 49.70% 64.66% 49.69% 64.27% 48.71% 64.56%
S12AJ: 48.90% 65.20% 49.12% 49.63% 49.03% 49.70% 49.21%* 48.94%
S1A2J: 49.69% 64.74% 48.65% 64.48% 49.43% 49.69% 48.66% 49.69%
A2S1J: Hypothetically =A1S2J
A21SJ: Hypothetically =A12SJ
A12SJ: 64.62% 64.45% 49.69% 64.57% 49.69% 64.45% 48.58% 63.99%
A1S2J: 49.72% 64.69% 49.72% 49.72% 48.67% 64.46% 48.95% 49.72%
AS21J: Hypothetically =AS21J
AS12J: 48.71% 64.53% 48.76% 49.69% 48.76% 49.74% 48.93% 48.69%
我们可以从表中注意到一些事情:
结果有几个高原,但只有两个主要的:不到 50% 和大约 65%。 L1 和 L2 可以在彼此之间自由置换而不影响结果。 将访问偏移 -32 字节可以改变效率。 我们感兴趣的模式(加载 1、加载 2、存储 1 和在它们周围任意位置添加添加和正确应用 -32 偏移)都是相同的,并且都在更高的平台上: 12SAJ
案例 0(未应用偏移),效率为 65.34%(最高)12ASJ
案例 1 (S-32
),效率为 64.48%1A2SJ
案例 3 (2L-32
,S-32
),效率为 64.06%A12SJ
案例 7 (1L-32
,2L-32
,S-32
),效率为 63.99%对于允许在更高的效率平台上执行的每个排列,总是存在至少一个“案例”。特别是,案例 1(其中 S-32
)似乎可以保证这一点。案例 2、4 和 6 保证在较低的平台上执行。它们的共同点是,其中一个或两个负载都偏移了 -32,而存储则没有。 对于情况 0、3、5 和 7,这取决于排列。
由此我们至少可以得出几个结论:
执行端口 2 和 3 真的不关心它们生成和加载的加载地址。 宏操作融合 add
和jmp
似乎不受任何指令排列的影响(特别是在案例 1 抵消下),这让我相信@Evgeny Kluev 的结论是不正确的:add
的距离来自jne
似乎不会影响它们的融合。我现在有理由确定 Haswell ROB 正确处理了这个问题。Evgeny 所看到的(从 12SAJ
效率为 65% 到其他情况,在案例 0 中效率为 49%)只是由于加载和存储的地址的值造成的影响,而不是由于核心的无能宏融合添加和分支。此外,宏操作融合必须至少在某些时间发生,因为平均循环时间为 1.5 CC。如果宏操作融合没有发生,这将是 2CC 最小值。 在未展开的循环中测试了所有有效和无效的指令排列后,我们没有看到高于 65.34% 的情况。这凭经验回答了是否可以在不展开的情况下使用全带宽的问题。
我将假设几种可能的解释:
由于地址相对于彼此的值(value),我们看到了一些奇怪的变态。 如果是这样,那么将存在一组 x
的偏移量。 ,y
和z
这将允许最大吞吐量。我的快速随机测试似乎不支持这一点。我们看到循环以一两步模式运行;循环迭代在一个时钟周期内交替运行,然后是两个。 这可能是受解码器影响的宏操作融合。来自阿格纳雾:
无法在 Sandy Bridge 和 Ivy Bridge 处理器上的四个解码器中的最后一个解码可融合算术/逻辑指令。我还没有测试这是否也适用于 Haswell。或者,每隔一个时钟周期就会向“错误”端口发出一条指令,从而阻止下一次迭代一个额外的时钟周期。这种情况会在下一个时钟周期内自我纠正,但会保持振荡。 如果有人可以访问英特尔性能计数器,他应该查看事件 UOPS_EXECUTED_PORT.PORT_[0-7]
.如果没有发生振荡,所有使用的端口将在相关的时间段内被平等地固定;否则,如果发生振荡,将有 50% 的 split 。尤其重要的是查看 Mystical 指出的端口(0、1、6 和 7)。
这就是我认为没有发生的事情:
我不相信融合算术+分支 uop 会通过转到端口 0 来阻止执行,因为预测采取的分支仅发送到端口 6(请参阅 Haswell -> Control transfer instructions
下的 Agner Fog 指令表)。在上述循环的几次迭代之后,分支预测器将知道这个分支是一个循环,并且总是按所采取的方式进行预测。
我相信这是一个可以用英特尔的性能计数器解决的问题。
关于c - 在 L1 缓存 : only getting 62% 中获取 Haswell 上的峰值带宽,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25899395/
我在 Haswell CPU(Intel Core i7-4790)上安装了 perf。但“性能列表”不包括“stalled-cycles-frontend”或“stalled-cycles-back
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
我正在使用 Intel Haswell CPU 的 FMA 指令来优化一些计算。 但是,我发现即使我将 MXCSR 寄存器设置为 DNZ 和 FTZ 模式,这些指令也会生成异常。 我如何强制这些 FM
哪些编译器(截至 2014 年 5 月)能够生成使用事务内存功能(受限事务内存,而不仅仅是锁省略)的代码? 最佳答案 GCC,截至 version 4.8支持英特尔 RTM: Support for
我正在尝试使用自上而下的微架构分析方法 (TMAM) 来分析 Intel Haswell CPU (Intel® Core™ i7-4900MQ) 上的执行情况,如 Intel® 64 and IA-
在准备一些演示文稿时,我突然想到,我不知道 Haswell 内核一次可以执行的整数运算数量的理论限制是多少。 我曾经天真地假设“Intel 内核具有 HT,但这可能会并行化不同类型的工作,因此内核可能
要知道,haswell是英特尔作为Ivy Bridge微架构的“第四代核心”继承者而开发的一种处理器微架构的代号。 1英特尔正式发布了基于这种微架构的CPU... More 但是,我想知道如何通过在
这个循环在 Intel Conroe/Merom 上每 3 个周期运行一次迭代,如预期的那样在 imul 吞吐量上出现瓶颈。但是在 Haswell/Skylake 上,它每 11 个周期运行一次迭代,
我正在查看AVX programming reference 。 new Haswell instructions包括一些期待已久的“聚集”负载。但是,我无法弄清楚索引数据项的对齐限制是什么。引用文献
我编写了一些在 Haswell i7 处理器上运行的 AVX2 代码。相同的代码库也用于非 Haswell 处理器,其中相同的代码应替换为它们的 SSE 等效项。我想知道编译器是否有办法忽略非 Has
在英特尔内部函数指南中,vmulpd和vfmadd213pd延迟为 5,vaddpd延迟为 3。 我编写了一些测试代码,但所有结果都慢了 1 个周期。 这是我的测试代码: .CODE test_lat
在英特尔内部函数指南中,vmulpd和vfmadd213pd延迟为 5,vaddpd延迟为 3。 我编写了一些测试代码,但所有结果都慢了 1 个周期。 这是我的测试代码: .CODE test_lat
我目前正在使用 Intel Haswell RTM(事务内存的硬件支持)开发应用程序。据我所知here和 here ,建议的过程是使用某种回退锁,以防事务中止。 推荐流程如下: someTypeOfL
关闭。这个问题需要debugging details .它目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and th
我正在 haswell 中试验 tsx 扩展,通过调整现有的中型(1000 行)代码库以使用 GCC 事务内存扩展(在 native 中间接使用 haswell tsx)而不是粗粒度锁。我正在使用 G
我有以下代码(正常、SSE 和 AVX): int testSSE(const aligned_vector & ghs, const aligned_vector & lhs) { int
GCC 支持 __builtin_clz(int x) 内置函数,它计算参数中前导零(连续的最高有效零)的数量。 除其他外0,这对于有效实现 lg(unsigned int x) 非常有用函数,取 x
我正在使用 AVX 一次计算八个点积。在我当前的代码中,我做了这样的事情(在展开之前): Ivy 桥/沙桥 __m256 areg0 = _mm256_set1_ps(a[m]); for(int i
我对使用 Sandy-Bridge 和 Haswell 可以完成每个内核每个周期的触发器感到困惑。 根据我对 SSE 的理解,SSE 的每个内核每个周期应该是 4 个触发器,AVX/AVX2 的每个内
我编写了很多 punpckl、pextrd 和 pinsrd 的代码,它们旋转 8x8 字节矩阵,作为使用循环平铺旋转 B/W 图像的更大例程的一部分。 我使用 IACA 对其进行了分析,以查看是否值
我是一名优秀的程序员,十分优秀!