gpt4 book ai didi

r - 如何计算 R 中线性回归模型中斜率的 95% 置信区间

转载 作者:行者123 更新时间:2023-12-01 18:31:25 27 4
gpt4 key购买 nike

下面是一个来自 R 的介绍性统计的练习:

使用 rmr 数据集,绘制代谢率与体重的关系图。将线性回归模型拟合到该关系。根据拟合模型,70 公斤体重的预测代谢率是多少?给出直线斜率的 95% 置信区间。

rmr 数据集位于“ISwR”包中。它看起来像这样:

> rmr
body.weight metabolic.rate
1 49.9 1079
2 50.8 1146
3 51.8 1115
4 52.6 1161
5 57.6 1325
6 61.4 1351
7 62.3 1402
8 64.9 1365
9 43.1 870
10 48.1 1372
11 52.2 1132
12 53.5 1172
13 55.0 1034
14 55.0 1155
15 56.0 1392
16 57.8 1090
17 59.0 982
18 59.0 1178
19 59.2 1342
20 59.5 1027
21 60.0 1316
22 62.1 1574
23 64.9 1526
24 66.0 1268
25 66.4 1205
26 72.8 1382
27 74.8 1273
28 77.1 1439
29 82.0 1536
30 82.0 1151
31 83.4 1248
32 86.2 1466
33 88.6 1323
34 89.3 1300
35 91.6 1519
36 99.8 1639
37 103.0 1382
38 104.5 1414
39 107.7 1473
40 110.2 2074
41 122.0 1777
42 123.1 1640
43 125.2 1630
44 143.3 1708

我知道如何计算给定 x 处的预测 y 但如何计算斜率的置信区间?

最佳答案

让我们拟合模型:

> library(ISwR)
> fit <- lm(metabolic.rate ~ body.weight, rmr)
> summary(fit)

Call:
lm(formula = metabolic.rate ~ body.weight, data = rmr)

Residuals:
Min 1Q Median 3Q Max
-245.74 -113.99 -32.05 104.96 484.81

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 811.2267 76.9755 10.539 2.29e-13 ***
body.weight 7.0595 0.9776 7.221 7.03e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 157.9 on 42 degrees of freedom
Multiple R-squared: 0.5539, Adjusted R-squared: 0.5433
F-statistic: 52.15 on 1 and 42 DF, p-value: 7.025e-09

斜率的 95% 置信区间是估计系数 (7.0595) ± 两个标准误差 (0.9776)。

这可以使用 confint 计算:
> confint(fit, 'body.weight', level=0.95)
2.5 % 97.5 %
body.weight 5.086656 9.0324

关于r - 如何计算 R 中线性回归模型中斜率的 95% 置信区间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15180008/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com