gpt4 book ai didi

gcc - 我的内核原型(prototype)存在问题(x86_64)

转载 作者:行者123 更新时间:2023-12-01 18:16:15 24 4
gpt4 key购买 nike

我在学习汇编的同时尝试了解内核的工作原理,并且在学习如何成功创建可启动的 x86_64 内核的过程中,我遇到了一个问题:
我尝试使用 0xB8000 中的 VGA 缓冲区成功输出一些带有“main.c”(下面的所有文件)中函数的文本,就像我对 32 位版本内核所做的那样原型(prototype),但不同的是启动文件不同。
这里的问题是,当我对 32 位版本使用完全相同的函数时,它成功打印到屏幕上,但是当使用新文件达到长模式时(multiboot.S >start.S)这不会发生,在 qemu 中测试时屏幕只是变黑,几秒钟后它崩溃并显示错误消息:

warning: TCG doesn't support requested feature: CPUID.01H:ECX.vmx [bit 5]
qemu-system-x86_64: Trying to execute code outside RAM or ROM at 0x00000000000a0000

为什么会发生这种情况? VGA 缓冲区不在 0xB8000 中,*.S 文件有问题吗?预先感谢!
我将在此处粘贴内核文件:
内核由 4 个文件组成:“main.c”、“start.S”、“multiboot.S”和链接描述文件“linker.ld”。
这3个文件链接并编译没有任何错误,文件如下:这是main.c(你会看到一个“basiccolors.h”,这个文件只是定义了vga颜色代码)

#include "basiccolors.h"
#include <stddef.h>
#include <stdint.h>

volatile uint16_t* vga_buffer = (uint16_t*)0xB8000; /* memory location of the VGA textmode buffer */
/* Columns and rows of the VGA buffer */
const int VGA_COLS = 80;
const int VGA_ROWS = 25;

/* We start displaying text in the top-left of the screen (column = 0, row = 0) */
int term_col = 0;
int term_row = 0;
uint8_t term_color = WHITE_TXT; /* This color and others are defined in basiccolors.h */

/* term_init() : This function initiates the terminal by clearing it */
void term_init()
{
/* Clear the textmode buffer */
for (int col = 0; col < VGA_COLS; col ++)
{
for (int row = 0; row < VGA_ROWS; row ++)
{
/* The VGA textmode buffer has size (VGA_COLS * VGA_ROWS) */
/* Given this, we find an index into the buffer for our character */
const size_t index = (VGA_COLS * row) + col;
/* Entries in the VGA buffer take the binary form BBBBFFFFCCCCCCCC, where: */
/* - B is the background color */
/* - F is the foreground color */
/* - C is the ASCII character */
/* Now we set the character to blank (a space character) */
vga_buffer[index] = ((uint16_t)term_color << 8) | ' ';
}
}
}

/* term_putc(char c) : This function places a single character onto the screen */
void term_putc(char c)
{
/* We don't want to display all characters, for example, the newline ones */
switch (c)
{
case '\n': /* Newline characters should return the column to 0, and increment the row */
{
term_col = 0;
term_row ++;
break;
}

default: /* Normal characters just get displayed and then increment the column */
{
/* Like before, calculate the buffer index */
const size_t index = (VGA_COLS * term_row) + term_col;
vga_buffer[index] = ((uint16_t)term_color << 8) | c;
term_col ++;
break;
}
}

/* We need to reset the column to 0, and increment the row to get to a new line */
if (term_col >= VGA_COLS)
{
term_col = 0;
term_row ++;
}

/* we get past the last row, so we need to reset both column and row to 0 in order to loop back to the top of the screen */
if (term_row >= VGA_ROWS)
{
term_col = 0;
term_row = 0;
}
}

/* term_print : prints an entire string onto the screen, remember to use the "\n" and that short of things */
void term_print(const char* str)
{
for (size_t i = 0; str[i] != '\0'; i ++) /* Keep placing characters until we hit the null-terminating character ('\0') */
term_putc(str[i]);
}
/* Main function of the kernel, the one that is called at the end of the loading */
void kmain(void)
{
/* Now we should initialize the interfaces */
term_init(); /* VGA basic interface, in "basicoutput.c/h" */
term_print("CKA Cobalt release [0-0-1]\n");
};

这是开始。S:

    .extern kmain

.section .data

.align 16
gdtr:
gdtr_limit:
.word (global_descriptor_table_end - global_descriptor_table) - 1
gdtr_pointer:
.int global_descriptor_table

.global global_descriptor_table
global_descriptor_table:
null_descriptor:
.quad 0x0000000000000000
code_descriptor:
.quad 0x0020980000000000
data_descriptor:
.quad 0x0000900000000000
global_descriptor_table_end:

.global null_segment
.set null_segment, (null_descriptor - global_descriptor_table)
.global code_segment
.set code_segment, (code_descriptor - global_descriptor_table)
.global data_segment
.set data_segment, (data_descriptor - global_descriptor_table)

multiboot_magic:
.space 4
multiboot_info:
.space 4

.section .bss

.global kernel_pagetable
.align 0x1000
kernel_pagetable:
pml4:
.space 0x1000
pdpt:
.space 0x1000
pd:
.space 0x1000
kernel_pagetable_end:

.global kernel_stack
kernel_stack:
.space 0x1000
kernel_stack_end:

.section .text
.code32

.global start

start:
cli

# store multiboot parameters in .data
mov %eax, multiboot_magic
mov %ebx, multiboot_info

# zerofill .bss
cld
mov $bss, %edi
mov $bss_end, %ecx
sub %edi, %ecx
xor %eax, %eax
rep stosb

# create pagetable for identity mapping lower 2 megabytes
# make minimal page table entries
.set pml4_entry, (pdpt + 0x03)
.set pdpt_entry, (pd + 0x03)
.set pd_entry, 0b10000011
movl $pml4_entry, pml4
movl $pdpt_entry, pdpt
movl $pd_entry, pd

# setup long mode
# load global descriptor table
lgdt (gdtr)

# enable Physical Address Extension (PAE)
mov %cr4, %eax
bts $5, %eax
mov %eax, %cr4

# set up page table
mov $kernel_pagetable, %eax
mov %eax, %cr3

# set up long mode
.set EFER_MSR_ADDRESS, 0xC0000080
mov $EFER_MSR_ADDRESS, %ecx
rdmsr
bts $8, %eax
wrmsr

# enable paging
mov %cr0, %eax
bts $31, %eax
mov %eax, %cr0

# long jump to set code segment
ljmp $code_segment, $longmode_start

.code64
longmode_start:
# data segment selector to all data segments
mov $data_segment, %bx
mov %bx, %ds
mov %bx, %es
mov %bx, %fs
mov %bx, %gs

# null segment selector to ss
mov $null_segment, %bx
mov %bx, %ss

# set up kernel stack
mov $kernel_stack_end, %rsp
push $0 # debugger backtrace stops here

# call kmain
mov multiboot_magic, %edi
mov multiboot_info, %esi
call kmain

# hang the computer
cli
hang:
hlt
jmp hang

这是多重引导。S:

    .set MULTIBOOT_PAGE_ALIGN, 1 << 0
.set MULTIBOOT_MEM_INFO, 1 << 1
.set MULTIBOOT_AOUT_KLUDGE, 1 << 16
.set MULTIBOOT_MAGIC, 0x1BADB002
.set MULTIBOOT_FLAGS, MULTIBOOT_PAGE_ALIGN | MULTIBOOT_MEM_INFO | MULTIBOOT_AOUT_KLUDGE
.set MULTIBOOT_CHECKSUM, -(MULTIBOOT_MAGIC + MULTIBOOT_FLAGS)

.section .mboot
.align 4

.global multiboot_header

multiboot_header:
.int MULTIBOOT_MAGIC
.int MULTIBOOT_FLAGS
.int MULTIBOOT_CHECKSUM
.int multiboot_header
.int text
.int data_end
.int kernel_end
.int start

这是我的 linker.ld:

OUTPUT_FORMAT("elf64-x86-64")
OUTPUT_ARCH(i386:x86-64)
ENTRY(start)

phys = 0x0100000;

SECTIONS
{
. = phys;
kernel_start = .;

.text ALIGN(4096) : AT( ADDR(.text) )
{
text = .;
*(.mboot) /* Put Multiboot header section in the beginning of .text section */
*(.text)
*(.rodata)
text_end = .;
}

.data ALIGN(4096) : AT( ADDR(.data) )
{
data = .;
*(.data)
data_end = .;
}

.bss ALIGN(4096) : AT( ADDR(.bss) )
{
bss = .;
*(.bss)
bss_end = .;
}

kernel_end = .;
}

所有这些代码都是通过以下命令编译和链接的:
正在编译...

x86_64-elf-gcc -ffreestanding -mcmodel=large -mno-red-zone -mno-mmx -mno-sse -mno-sse2 -c <file> -o <object-file>

和链接:

x86_64-elf-gcc -ffreestanding -T linker.ld multiboot.o start.o main.o -o kernel.bin -nostdlib -lgcc  

此命令是 osdev.com 在教程 http://wiki.osdev.org/Creating_a_64-bit_kernel 中建议的所有内容均使用 x86_64 架构的 gcc 交叉编译器进行编译和链接。

最佳答案

使用 -kernel 参数时,QEMU 不支持 ELF64 可执行文件。您需要使用 multiboot2 兼容加载程序(例如 GRUB2)来启动内核。不幸的是,您还需要将多重引导 header 更改为 multiboot2 compliant 。您可以将 multiboot.S 文件替换为:

.section .mboot
.code32
.align 8

# constants for multiboot2 header:
.set MAGIC2, 0xe85250d6
.set ARCH2, 0 # i386 protected mode
.set CHECKSUM2, (-(MAGIC2 + ARCH2 + (mboot2_end - mboot2_start)) & 0xffffffff)

/* multiboot2 header */
mboot2_start:
.long MAGIC2
.long ARCH2
.long mboot2_end - mboot2_start
.long CHECKSUM2
.word 0 # type
.word 0 # flags
.long 8 # size
mboot2_end:

您按照之前的方式进行编译。有一个问题 - 为了确保此 header 最终不会被推到文件的前 8kb 之外,您可能需要在链接时指定 4kb 页面:

x86_64-elf-gcc -z max-page-size=0x1000 -ffreestanding -T linker.ld \
multiboot.o start.o main.o -o kernel.bin -nostdlib -lgcc

添加 -z max-page-size=0x1000 强制最大页面大小为 4kb。

关于gcc - 我的内核原型(prototype)存在问题(x86_64),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47102098/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com