gpt4 book ai didi

java - 如何在 Java Spark 中将列转置为行

转载 作者:行者123 更新时间:2023-12-01 18:13:49 30 4
gpt4 key购买 nike

我想将表格中的一些列转置为行。我正在使用 Java 和 Spark 2.1.2。这是我的表格:

+-----+-----+-----+-----+-----+  
| A |col_1|col_2|col_3|col_4|
+-----+-----------------+------+
| 1 | 0.0| 0.6| 0.8| 0.9|
| 2 | 0.6| 0.7| 0.7| 1.2|
| 3 | 0.5| 0.9| 1.8| 9.1|
| ...| ...| ...| ...| ...|

我想要这样的东西:

+-----+--------+-----------+    
| A | col_id | col_value |
+-----+--------+-----------+
| 1 | col_1| 0.0|
| 1 | col_2| 0.6|
| 1 | col_3| 0.8|
| ... | ... | ...|
| 2 | col_1| 0.6|
| 2 | col_2| 0.7|
| ...| ...| ...|
| 3 | col_1| 0.5|
| 3 | col_2| 0.9|
| ...| ...| ...| and so on

有人知道我该怎么做吗?我知道 Python 存在解决方案,但我正在尝试使用 Java 来实现。

我尝试过这个方法

 df.selectExpr("stack(4, 'col_1', col_1, 'col_2', col_2', col_3', col_3,'col_4', col_4)as (Key,Value)");

但它不起作用。

编辑:

我能够使用上述方法得到结果。事实证明我使用的是 SparkContext 而不是 SQLContext,它运行得很好。

最佳答案

使用 Spark-scala 的解决方案:

def transpose(spark: SparkSession, df: DataFrame, transposeUsing: Seq[String]): DataFrame = {
import spark.implicits._
val (cols, types) = df.dtypes.filter{ case (c, _) => !transposeUsing.contains(c)}.unzip

val kvdf = explode(array(cols.map(c => struct(lit(c).alias("column_name"),col(c).alias("column_value"))): _*))

val constantCols = transposeUsing.map(col(_))

df.select(constantCols :+ kvdf.alias("_kvdf"): _*)
.select(constantCols ++ Seq($"_kvdf.column_name", $"_kvdf.column_value"): _*)
}
//call the function
transpose(df, Seq("A")).show()

关于java - 如何在 Java Spark 中将列转置为行,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60411037/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com