- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
第一次在这里提问,我会尽力明确 - 但请告诉我是否应该提供更多信息!其次,这是一个很长的问题......希望对某人来说很容易解决;)!因此,我使用“R”根据一些论文(Manera 等人,2012 年)对多元 GARCH 模型进行建模。
我使用均值方程中的外部回归量对恒定条件相关性 (CCC) 和动态条件相关性 (DCC) 模型进行建模;对于具有外部回归量的单变量 GARCH,使用“R”版本 3.0.1 和包“rugarch”版本 1.2-2,对于 CCC/DCC 模型使用“ccgarch”包(版本 0.2.0-2)。 (我目前正在研究“rmgarch”包 - 但它似乎仅适用于 DCC,我也需要 CCC 模型。)
我的模型的平均方程存在问题。在我上面提到的论文中,CCC和DCC模型之间的均值方程的参数估计发生了变化!我不知道如何在 R 中做到这一点......(目前,在Google上查找Tsay的书“金融时间序列分析”和Engle的书“预期相关性”来发现我的错误)
我所说的“我的平均方程在 CCC 和 DCC 模型之间不会改变”的意思是:我使用 rugarch 包为 n=5 时间序列指定单变量 GARCH。然后,我使用 GARCH 的估计参数(ARCH + GARCH 项)并将它们用于 CCC 和 DCC 函数“eccc.sim()”和“dcc.sim()”。然后,从 eccc.estimation() 和 dcc.estimation() 函数,我可以检索方差方程以及相关矩阵的估计值。但不适用于均值方程。
我只发布了单变量模型和 CCC 模型的 R 代码(可重现的和我原来的代码)。谢谢你阅读我的帖子!!!!
注意:在下面的代码中,“data.repl”是一个尺寸为 843x22 的“zoo”对象(9 个每日商品返回系列和解释变量系列)。多元 GARCH 仅适用于 5 系列。
可重现的代码:
# libraries:
library(rugarch)
library(ccgarch)
library(quantmod)
# Creating fake data:
dataRegr <- matrix(rep(rnorm(3149, 11, 1),1), ncol=1, nrow=3149)
dataFuelsLag1 <- matrix(rep(rnorm(3149, 24, 8),2), ncol=2, nrow=3149)
#S&P 500 via quantmod and Yahoo Finance
T0 <- "2000-06-23"
T1 <- "2012-12-31"
getSymbols("^GSPC", src="yahoo", from=T0, to=T1)
sp500.close <- GSPC[,"GSPC.Close"],
getSymbols("UBS", src="yahoo", from=T0, to=T1)
ubs.close <- UBS[,"UBS.Close"]
dataReplic <- merge(sp500.close, ubs.close, all=TRUE)
dataReplic[which(is.na(dataReplic[,2])),2] <- 0 #replace NA
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- dataRegr
regre.fuels <- cbind(dataFuelsLag1, dataRegr)
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:2)
for(i in 1:2){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:2)
for(i in 1:2){
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], dataReplic[,i])
}
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, 2)
cccFuels.A <- diag(coef.unlist[6,])
cccFuels.B <- diag(coef.unlist[7, ])
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
我的原始代码:
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- as.matrix(data.repl[-1,c(10:13, 16, 19:22)])
regre.fuels <- cbind(fuel.lag1, ext.regr.ext) #fuel.lag1 is the pre-lagged series
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:5)
for(i in 1:5){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}# regre.fuels[,-i] => "-i" because I model an AR(1) for each mean equation
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:5)
for(i in 1:5){
j <- i
if(j==5){j <- 7} #because 5th "fuels" is actually column #7 in data.repl
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], as.matrix(data.repl[-1,j])))
}
#fuelsLag1.names <- paste(cmdty.names[fuels.ind], "(-1)")
fuelsLag1.names <- cmdty.names[fuels.ind]
rowNames.ext <- c("Constant", fuelsLag1.names, "Working's T Gasoline", "Working's T Heating Oil",
"Working's T Natural Gas", "Working's T Crude Oil",
"Working's T Soybean Oil", "Junk Bond", "T-bill",
"SP500", "Exch.Rate")
ic.n <- c("Akaike", "Bayes")
garch11.ext.univSpec <- univ.spec(garch11.fuels.fit, ols.fit.ext, rowNames.ext,
rowNum=c(1:15), colNames=cmdty.names[fuels.ind],
ccc=TRUE)
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
# From my GARCH(1,1)-AR(1) model, I extract ARCH and GARCH
# in order to model a CCC GARCH model:
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, length(fuels.ind))
cccFuels.A <- diag(coef.unlist[17,])
cccFuels.B <- diag(coef.unlist[18, ])
#based on Engle(2009) book, page 31:
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
# "allow the squared errors and variances of the series to affect
# the dynamics of the individual conditional variances
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
colnames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
rownames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
lowerTri(ccc.fuels.condCorr, rep=NA)
最佳答案
您是否知道有一整套rmgarch对于多元 GARCH 模型?
根据其描述,它涵盖
Feasible multivariate GARCH models including DCC, GO-GARCH and Copula-GARCH.
关于R - 多元 GARCH 建模(rugarch 和 ccgarch),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16874375/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!