gpt4 book ai didi

r - 如何通过 vglm tobit 模型使用健壮的 SE 和集群 SE?

转载 作者:行者123 更新时间:2023-12-01 16:57:04 29 4
gpt4 key购买 nike

我正在尝试将 tobit 模型从 Stata 迁移到 R。

稳健的 Stata 命令只需将 ,vce(robust) 添加到模型中。对于集群,它将是 ,vce(cluster idvar)

可重现的 Stata 示例:

use http://www.ats.ucla.edu/stat/stata/dae/tobit, clear
tobit apt read math i.prog, ul(800)
tobit apt read math i.prog, ul(800) vce(cluster prog)

可重现的 R 示例:

library("VGAM")

dat <- read.csv("http://www.ats.ucla.edu/stat/data/tobit.csv")

summary(m <- vglm(apt ~ read + math + prog, tobit(Upper = 800), data = dat))

我的理解是,coeftest(m, vcov =三明治)应该给我强大的se。

但我得到以下信息:错误:未为此 S4 类定义 $ 运算符。

有人可以建议一种方法来估计 vglm 模型的鲁棒 se 并使用 vglm 聚类 se 吗?

最佳答案

我自己花了一整天的时间研究这个问题,我想我终于找到了一个合适的包:Zelig

http://docs.zeligproject.org/en/latest/zelig-tobit.html

比较无聚类与聚类:

没有

> summary(m <- zelig(apt ~ read + math + prog,
below=0, above=Inf, model="tobit", data = dat))


How to cite this model in Zelig:
Kosuke Imai, Gary King, and Olivia Lau. 2015.
"tobit: Linear regression for Left-Censored Dependent Variable"
in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"
http://gking.harvard.edu/zelig


Call:
"survreg"(formula = formula, dist = "gaussian", data = data,
robust = robust)
Value Std. Error z p
(Intercept) 242.74 29.760 8.16 3.45e-16
read 2.55 0.576 4.43 9.24e-06
math 5.38 0.651 8.27 1.31e-16
proggeneral -13.74 11.596 -1.18 2.36e-01
progvocational -48.83 12.818 -3.81 1.39e-04
Log(scale) 4.12 0.050 82.41 0.00e+00

Scale= 61.6

Gaussian distribution
Loglik(model)= -1107.9 Loglik(intercept only)= -1202.8
Chisq= 189.72 on 4 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 200

> summary(m <- zelig(apt ~ read + math + prog, below=0,
above=Inf, model="tobit",
data = dat,robust=T,cluster="prog"))


How to cite this model in Zelig:
Kosuke Imai, Gary King, and Olivia Lau. 2015.
"tobit: Linear regression for Left-Censored Dependent Variable"
in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"
http://gking.harvard.edu/zelig


Call:
"survreg"(formula = formula, dist = "gaussian", data = data,
robust = robust)
Value Std. Err (Naive SE) z p
(Intercept) 242.74 2.8315 29.760 85.73 0.00e+00
read 2.55 0.3159 0.576 8.08 6.40e-16
math 5.38 0.2770 0.651 19.44 3.78e-84
proggeneral -13.74 0.3252 11.596 -42.25 0.00e+00
progvocational -48.83 0.1978 12.818 -246.83 0.00e+00
Log(scale) 4.12 0.0586 0.050 70.34 0.00e+00

Scale= 61.6

Gaussian distribution
Loglik(model)= -1107.9 Loglik(intercept only)= -1202.8
Chisq= 189.72 on 4 degrees of freedom, p= 0
(Loglikelihood assumes independent observations)
Number of Newton-Raphson Iterations: 5
n= 200

关于r - 如何通过 vglm tobit 模型使用健壮的 SE 和集群 SE?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21608561/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com