- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想证明以下事实:
1 subgoals
a : nat
b : nat
H0 : a + b = 0
______________________________________(1/1)
a = 0 /\ b = 0
看起来很简单,甚至微不足道,但我不知道该怎么做。我尝试了归纳
、案例
,但没有成功。有什么想法吗?
感谢您的帮助。
最佳答案
通过对n1
进行案例分析,可以证明forall n1 n2, n1 + n2 = 0 -> n1 = 0
。
如果n1
为0
,则结论为0 = 0
,您可以证明这一点,因为=
是反射性的。
如果存在 n3
使得 n1 = S n3
,则假设 S n3 + n2 = 0
简化为 S (n3 + n2) = 0
并暗示 False
因为 0
和 S
是不同的构造函数。False
意味着任何事情,所以你就完成了。
您可以通过使用前面的事实和加法交换律来证明对于所有n1 n2,n1 + n2 = 0 -> n2 = 0
。然后你就可以证明对于所有 n1 n2, n1 + n2 = 0 -> n1 = 0/\n2 = 0
。
Check eq_refl.
Check O_S.
Check False_rect.
Conjecture plus_comm : forall n1 n2, n1 + n2 = n2 + n1.
Check conj.
不过,尝试尽可能自动化证明可能会更好。
Require Import Coq.Setoids.Setoid.
Set Firstorder Depth 0.
Create HintDb Hints.
Ltac simplify := firstorder || autorewrite with Hints in *.
Conjecture C1 : forall t1 (x1 : t1), x1 = x1 <-> True.
Conjecture C2 : forall n1, S n1 = 0 <-> False.
Conjecture C3 : forall n1, 0 = S n1 <-> False.
Conjecture C4 : forall n1 n2, S n1 = S n2 <-> n1 = n2.
Conjecture C5 : forall n1, 0 + n1 = n1.
Conjecture C6 : forall n1 n2, S n1 + n2 = S (n1 + n2).
Hint Rewrite C1 C2 C3 C4 C5 C6 : Hints.
Theorem T1 : forall n1 n2, n1 + n2 = 0 <-> n1 = 0 /\ n2 = 0.
Proof. destruct n1; repeat simplify. Qed.
Hint Rewrite T1 : Hints.
无论如何,这个事实已经在标准库中得到了证明。
Require Import Coq.Arith.Arith.
Check plus_is_O.
关于coq - Coq 中的 a + b = 0 -> a = 0 且 b = 0,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23889516/
我正在尝试理解 Coq 定理: Theorem thm0 : UseCl Pos (PredVP (UsePN john_PN) walk_V) -> UseCl Pos
编辑 Require Import Bool List ZArith. Variable A: Type. Inductive error := | Todo. Induc
我试图在 Coq 中证明以下引理: Lemma not_eq_S2: forall m n, S m <> S n -> m <> n. 这似乎很容易,但我不知道如何完成证明。有人可以帮帮我吗? 谢谢
我想查看我的证明中使用的所有公理。 获取此类信息的最简单方法是什么? 我将使用哪些命令、脚本或工具? 我对所有公理或所有使用过的公理感兴趣。 最佳答案 你应该使用 Print Assumptions
我想以某种方式限制在归纳定义中允许什么样的输入构造函数。说我想说定义二进制数如下: Inductive bin : Type := | O : bin | D : bin -> bin |
Coq 标准库中是否有对自然数进行欧几里德除法的函数?我一直无法找到一个。如果没有,那么从数学上讲,是否有理由不应该有一个? 我想要这个的原因是因为我试图将一个列表分成两个较小的列表。我希望一个列表的
我在将参数传递给 coq 中的产品类型时遇到问题。我有一个看起来像这样的定义, Definition bar (a:Type) := a->Type. 我需要定义一个函数,它接收“a”和“ba
这是本在线类(class)中出现的证明https://softwarefoundations.cis.upenn.edu/plf-current/StlcProp.html#lab222 . Proo
在命题和谓词演算中证明了数十个引理后(有些比其他的更具挑战性,但通常仍然可以在 intro-apply-destruct 自动驾驶仪上证明)我从 ~forall 开始打了一个并立即被捕获。显然,我缺乏
我正在学习命题逻辑和推理规则。析取三段论规则指出,如果我们的前提中有(P 或 Q),并且也有(非 P);然后我们可以到达Q。 我一生都无法弄清楚如何在 Coq 中做到这一点。假设我有: H : A \
从 Coq 引用手册 (8.5p1) 来看,我的印象是 revert是 intro 的倒数,但 generalize 也是如此在某种程度上。例如,revert和 generalize dependen
假设我知道某些自然数是好的。我知道 1 很好,如果 n 很好,那么 3n 就是,如果 n 很好,那么 n+5 就是,这些只是构造好数字的方法。在我看来,这在 Coq 中的充分形式化是 Inductiv
通常在 Coq 中,我发现自己在做以下事情:我有证明目标,例如: some_constructor a c d = some_constructor b c d 而我真的只需要证明a = b因为无论如
我希望能够为不同的归纳定义定义相同的 Coq 符号,并根据参数的类型区分这些符号。 这是一个最小的例子: Inductive type : Type := | TBool : type. Induct
有没有办法对 Coq 的类型类使用递归?例如,在为列表定义显示时,如果您想调用 show递归列表函数,那么你将不得不使用这样的固定点: Require Import Strings.String. R
假设我有一个解决某种引理的奇特策略: Ltac solveFancy := some_preparation; repeat (first [important_step1 | importa
我是 Coq 的新手。我注意到可以使用在 Coq 中定义空集 Inductive Empty_set : Set :=. 是否也可以将函数从空集定义为另一个通用集/类型? 如果是这样怎么办? 最佳答案
有人能给我一个 Coq 中存在实例化和存在泛化的简单例子吗?当我想证明exists x, P ,其中 P是一些 Prop使用 x ,我经常想命名x (如 x0 或类似的),并操纵 P。这可以是 Coq
我见过很多在功能上相互重叠的 Coq 策略。 例如,当您在假设中有确切的结论时,您可以使用 assumption , apply , exact , trivial ,也许还有其他人。其他示例包括 d
我需要使用标准库中称为 Coq.Arith.PeanoNat ( https://coq.inria.fr/library/Coq.Arith.PeanoNat.html ) 的部分。 我尝试过导入整
我是一名优秀的程序员,十分优秀!