- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有以下 dask 数据框
@timestamp datetime64[ns]
@version object
dst object
dst_port object
host object
http_req_header_contentlength object
http_req_header_host object
http_req_header_referer object
http_req_header_useragent object
http_req_method object
http_req_secondleveldomain object
http_req_url object
http_req_version object
http_resp_code object
http_resp_header_contentlength object
http_resp_header_contenttype object
http_user object
local_time object
path object
src object
src_port object
tags object
type int64
dtype: object
我想通过操作得到一个分组
grouped_by_df = df.groupby(['http_user', 'src'])['@timestamp'].agg(['min', 'max']).reset_index()
运行 grouped_by_df.count().compute()` 时出现以下错误:
Traceback (most recent call last):
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-62-9acb48b4ac67>", line 1, in <module>
user_host_map.count().compute()
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/dask/base.py", line 98, in compute
(result,) = compute(self, traverse=False, **kwargs)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/dask/base.py", line 205, in compute
results = get(dsk, keys, **kwargs)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/client.py", line 1893, in get
results = self.gather(packed)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/client.py", line 1355, in gather
direct=direct, local_worker=local_worker)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/client.py", line 531, in sync
return sync(self.loop, func, *args, **kwargs)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/utils.py", line 234, in sync
six.reraise(*error[0])
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/utils.py", line 223, in f
result[0] = yield make_coro()
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/tornado/gen.py", line 1055, in run
value = future.result()
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/tornado/concurrent.py", line 238, in result
raise_exc_info(self._exc_info)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/tornado/gen.py", line 1063, in run
yielded = self.gen.throw(*exc_info)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/client.py", line 1235, in _gather
traceback)
File "/home/avlach/virtualenvs/dask/local/lib/python2.7/site-packages/distributed/protocol/pickle.py", line 59, in loads
return pickle.loads(x)
TypeError: itemgetter expected 1 arguments, got 0
我正在使用 dask 版本 0.15.1 和 LocalCLuster
客户端。是什么导致了这个问题?
最佳答案
我们刚刚遇到了类似的错误,我们正在运行以下形式的东西:
df[['col1','col2']].groupby('col1').agg("count")
并在最后得到类似的错误:
return pickle.loads(x)
TypeError: itemgetter expected 1 arguments, got 0
但是当我们将 groupby 重新格式化为以下形式时:
df.groupby('col1')['col2'].count()
我们不再收到该错误。我们现在已经重复了几次,这似乎不仅仅是侥幸。完全不确定为什么会发生这种情况,但如果有人正在为同一问题而苦苦挣扎,则值得一试。
关于python - Dask agg函数 pickle 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47219532/
我有两种方法来汇总数据。 首先,我过滤mysql数据并进行汇总 其次,i aggs将数据过滤为aggs。 如下: 我发现了不同的结果,我不知道为什么。 有人可以解释吗? 最佳答案 从Docs By d
在一个具体问题上,假设我有一个 DataFrame DF word tag count 0 a S 30 1 the S 20 2 a T
我正在使用Python进行数据分析,但我遇到了部分CH的问题。9(数据聚合和分组操作)部分,介绍“使用函数分组”。。具体地说,如果我使用GroupBy对象方法或Numpy定义的函数,一切都会正常工作。
接听this question原来 df.groupby(...).agg(set) 和 df.groupby(...).agg(lambda x: set(x)) 正在产生不同的结果。 数据: df
如何在这样的字符串列中执行最大值? dataframe = pandas.DataFrame.from_dict( { "DEP
我有一个查询,用于查询给定日期时间窗口(即2017-02-17T15:00:00.000和2017-02-17T16:00:00.000之间)中的条目数。执行此查询时,我得到的结果不正确(最好说结果是
我正在尝试进行一些聚合查询并遇到一些问题。 GET /my_index/_search { "size" : 0, "aggs":{ "group_by":{ "terms": {
对于pandas agg,有没有办法根据数据类型指定聚合函数?例如,对象类型的所有列都获得“第一”,所有 float 获得“平均值”,等等?以避免必须输入所有列及其各自的聚合函数。 示例数据: imp
这是我当前的代码: pipe_exec_df_final_grouped = pipe_exec_df_final.groupBy("application_id").agg(collect_list
我有一个简单的 dataframe (df),如下所示: index Job Person 1 j1 Cathy 2 j2 Mark 3 j3 Cathy 4
我正在尝试对术语(count_bucket)进行AVG计数,但是出现错误: "buckets_path must reference either a number value or a single
我正在执行弹性查询并使用 REST 调用读取 java 代码中的响应。 当我阅读响应时,字段的顺序 - 200、204、4xx、5xx 不会按照响应中的顺序返回。 在下面找到示例请求 GET appl
我希望对文档下的属性值进行 Max 聚合,该属性是复杂对象(键和值)的列表。这是我的数据: [{ "id" : "1", "listItems" : [
我使用 Elasticsearch 来存储我的生物数据。 我尝试使用过滤后的 aggs 进行查询,但返回的数据不是我想要的。 问题来自这样一个事实,即我为每个样本都有一个“d_”属性,它是一个数组。我
当我尝试运行此查询时,elasticsearch无法回答,并且发生大量缓存逐出(与字段缓存有关)。 我不想在此查询中缓存任何字段,因为这是一个分析查询,我每天只运行一次。有什么办法可以在不使用字段缓存
我想将 DataFrame.agg 的输出转换为一个系列,其中索引是列名称和 agg 函数名称的组合。 看我有 In [132]: df = pd.DataFrame({ ...:
我想根据索引的第二级对具有多重索引的数据帧应用不同的函数。 例如,对于数据框: In [4]: df = pd.DataFrame({'a': [1,2,6,7],'b': [7,1,4,5]}, i
假设我有这样的代码: meanData = all_data.groupby(['Id'])[features].agg('mean') 这按'Id' 值对数据进行分组,选择所需的特征,并通过计算的'
下面是我的数据框的一个小样本,它有 25000 奇数行长: In [58]: df Out[58]: Send_Agent Send_Amount 0 ADR000264 361
假设我有一个 pandas dataFrame (data_stores) 类似于以下内容: store| item1 | item2 | item3 ------------------------
我是一名优秀的程序员,十分优秀!