- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
对于那些在 Foundry 环境中工作的人,我正在尝试在“代码存储库”中构建一个管道,以将原始数据集(来自 Excel 文件)处理成一个干净的数据集,稍后我将在“轮廓”中对其进行分析。
为此,我使用了 python,除了管道似乎正在使用 pyspark,并且在某些时候我必须将我用 Pandas 清理的数据集转换为 pyspark 数据集,这就是我被卡住的地方。
我已经查看了有关将 Pandas DF 转换为 Pyspark DF 的 stackover flow 的几篇文章,但到目前为止似乎没有一个解决方案有效。
当我尝试运行转换时,尽管我强制使用了模式,但始终无法转换数据类型。
Python代码部分已经在Spyder中测试成功(导入导出有Excel文件)并给出了预期的结果。只有当我需要转换为 pyspark 时,它才会以某种方式失败。
@transform_pandas(
Output("/MDM_OUT_OF_SERVICE_EVENTS_CLEAN"),
OOS_raw=Input("/MDM_OUT_OF_SERVICE_EVENTS"),
)
def DA_transform(OOS_raw):
''' Code Section in Python '''
mySchema=StructType([StructField(OOS_dup.columns[0], IntegerType(),
True),
StructField(OOS_dup.columns[1], StringType(), True),
...])
OOS_out=sqlContext.createDataFrame(OOS_dup,schema
=mySchema,verifySchema=False)
return OOS_out
AttributeError: 'unicode' object has no attribute 'toordinal'.
Datetime64[ns]
在 Pandas 。我已经尝试将此列转换为字符串和整数,但它也失败了。
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4972 entries, 0 to 4971
Data columns (total 51 columns):
OOS_ID 4972 non-null int64
OPERATOR_CODE 4972 non-null object
ATA_CAUSE 4972 non-null int64
EVENT_CODE 3122 non-null object
AC_MODEL 4972 non-null object
AC_SN 4972 non-null int64
OOS_DATE 4972 non-null datetime64[ns]
AIRPORT_CODE 4915 non-null object
RTS_DATE 4972 non-null datetime64[ns]
EVENT_TYPE 4972 non-null object
CORRECTIVE_ACTION 417 non-null object
DD_HOURS_OOS 4972 non-null float64
EVENT_DESCRIPTION 4972 non-null object
EVENT_CATEGORY 4972 non-null object
ATA_REPORTED 324 non-null float64
TOTAL_CAUSES 4875 non-null float64
EVENT_NUMBER 3117 non-null float64
RTS_TIME 4972 non-null object
OOS_TIME 4972 non-null object
PREV_REPORTED 4972 non-null object
FERRY_IND 4972 non-null object
REPAIR_STN_CODE 355 non-null object
MAINT_DOWN_TIME 4972 non-null float64
LOGBOOK_RECORD_IDENTIFIER 343 non-null object
RTS_IND 4972 non-null object
READY_FOR_USE 924 non-null object
DQ_COMMENTS 2 non-null object
REVIEWED 5 non-null object
DOES_NOT_MEET_SPECS 4 non-null object
CORRECTED 12 non-null object
EDITED_BY 4972 non-null object
EDIT_DATE 4972 non-null datetime64[ns]
OUTSTATION_INDICATOR 3801 non-null object
COMMENT_TEXT 11 non-null object
ATA_CAUSE_CHAPTER 4972 non-null int64
ATA_CAUSE_SECTION 4972 non-null int64
ATA_CAUSE_COMPONENT 770 non-null float64
PROCESSOR_COMMENTS 83 non-null object
PARTS_AVAIL_AT_STATION 4972 non-null object
PARTS_SHIPPED_AT_STATION 4972 non-null object
ENGINEER_AT_STATION 4972 non-null object
ENGINEER_SENT_AT_STATION 4972 non-null object
SOURCE_FILE 4972 non-null object
OOS_Month 4972 non-null float64
OOS_Hour 4972 non-null float64
OOS_Min 4972 non-null float64
RTS_Month 4972 non-null float64
RTS_Hour 4972 non-null float64
RTS_Min 4972 non-null float64
OOS_Timestamp 4972 non-null datetime64[ns]
RTS_Timestamp 4972 non-null datetime64[ns]
dtypes: datetime64[ns](5), float64(12), int64(5), object(29)
最佳答案
如果它可能对你们中的一些人有所帮助,我在官方 Foundry 文档中找到了有关如何在 pandas 和 pyspark DF 之间正确转换的文档。
OOS_dup 是我想转换回 Spark 的 Pandas 数据帧。
# Extract the name of each columns with its data type in pandas
col = OOS_dup.columns
col_type = list()
for c in col:
t = OOS_dup[c].dtype.name
col_type.append(t)
df_schema = pd.DataFrame({"field": col, "data_type": col_type})
# Define a function to replace missing (NaN sky coverage cells with Null
def replace_missing(df, col_names):
for col in col_names:
df = df.withColumn("{}".format(col),
F.when(df["{}".format(col)] == "NaN", None).otherwise(df["{}".format(col)]))
return df
# Replace missing values
OOS_dup = replace_missing(OOS_dup, col)
# Define a function to change column types to the proper type in spark
def change_type(df, col_names, dtypes):
for col in col_names:
df = df.withColumn("{}".format(col), F.when(dtypes == "float64", (df["{}".format(col)]).cast("double")).when(dtypes == "int64", (df["{}".format(col)]).cast("int")).when(dtypes == "datetime64[ns]", (df["{}".format(col)]).cast("date")).otherwise((df["{}".format(col)]).cast("string")))
return df
# Cast each columns to the proper data type
OOS_dup = change_type(OOS_dup, df_schema["field"], df_schema["data_type"])
OOS_dup = sqlContext.createDataFrame(OOS_dup)
关于python - 将数据帧从 Pandas 转换为 pyspark 到 Foundry 的数据类型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57894967/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!