- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在用keras训练模型,并且在fit_generator函数的回调中遇到错误。我总是跑到纪元3rd并收到此错误
annotation_path = 'train2.txt'
log_dir = 'logs/000/'
classes_path = 'model_data/deplao_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
class_names = get_classes(classes_path)
num_classes = len(class_names)
anchors = get_anchors(anchors_path)
input_shape = (416,416) # multiple of 32, hw
is_tiny_version = len(anchors)==6 # default setting
if is_tiny_version:
model = create_tiny_model(input_shape, anchors, num_classes,
freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5')
else:
model = create_model(input_shape, anchors, num_classes,
freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
[error]
Traceback (most recent call last):
File "train.py", line 194, in <module>
_main()
File "train.py", line 69, in _main
callbacks=[logging, checkpoint])
File "C:\Users\ilove\AppData\Roaming\Python\Python37\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\Users\ilove\AppData\Roaming\Python\Python37\lib\site-packages\keras\engine\training.py", line 1418, in fit_generator
initial_epoch=initial_epoch)
File "C:\Users\ilove\AppData\Roaming\Python\Python37\lib\site-packages\keras\engine\training_generator.py", line 251, in fit_generator
callbacks.on_epoch_end(epoch, epoch_logs)
File "C:\Users\ilove\AppData\Roaming\Python\Python37\lib\site-packages\keras\callbacks.py", line 79, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "C:\Users\ilove\AppData\Roaming\Python\Python37\lib\site-packages\keras\callbacks.py", line 429, in on_epoch_end
filepath = self.filepath.format(epoch=epoch + 1, **logs)
KeyError: 'val_loss'
最佳答案
此回调在迭代3的末尾运行。
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
logs
变量中没有val_loss:
filepath = self.filepath.format(epoch=epoch + 1, **logs)
关于python - KeyError : '' val_loss"when training model,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56847576/
我在下面的类(class)中尝试获取包含每次训练的损失和验证损失的元组列表 class LossHistory(keras.callbacks.Callback): def on_train_
我是 tensorflow 新手,我正在尝试通过 github 中的示例来学习它,现在我找到了一个示例,但损失和 val_loss 的结果大于“1”(您可以在下面看到结果在 800 之间)和 700
我有一个简单的问题突然让我怀疑我的工作。 如果我只有训练和验证集,我是否可以在训练时监控 val_loss,或者这会增加我的训练偏差。我想在验证集训练结束时测试我的准确性,但突然我在想,如果我在训练时
当我在自定义回调中手动计算验证损失时,结果与使用 L2 内核正则化时 keras 报告的结果不同。 示例代码: class ValidationCallback(Callback): def
(使用 keras)训练模型时,val_loss(如 keras 训练日志中所示)/epoch_loss(如张量板中所示)指标是什么测量模型何时有多个输出?如果这很重要,那么这些输出是否也被加权了?
我是 Keras 新手,我正在使用它构建一个普通的神经网络来对数字 MNIST 数据集进行分类。 事先我已经将数据分为 3 部分:55000 个用于训练,5000 个用于评估,10000 个用于测试,
我根据此处讨论的内容为 mnist 数据集设置了一个去噪自动编码器: https://blog.keras.io/building-autoencoders-in-keras.html 我正在尝试查看
训练开始时,运行窗口中只显示loss和acc,缺少val_loss和val_acc。只有在最后,才会显示这些值。 model.add(Flatten()) model.add(Dense(512, a
我正在训练 Keras(Tensorflow 后端,Python,在 MacBook 上),并且在 fit_generator 函数的提前停止回调中遇到错误。错误如下: RuntimeWarning:
我正在尝试建立一个 LSTM 模型来预测股票第二天是上涨还是下跌。如您所见,一个简单的分类任务让我卡住了几天。我只选择 3 个特征来输入我的网络,下面我展示了我的预处理: # pre-processi
我正在尝试对图像进行分类,无论它们是猫、狗还是 Pandas 。数据包含所有图像(猫 + 狗 + Pandas ),标签包含它们的标签,但不知何故,当我将数据拟合到模型时,val_loss 和 val
我正在尝试对图像进行分类,无论它们是猫、狗还是 Pandas 。数据包含所有图像(猫 + 狗 + Pandas ),标签包含它们的标签,但不知何故,当我将数据拟合到模型时,val_loss 和 val
我正在用keras训练模型,并且在fit_generator函数的回调中遇到错误。我总是跑到纪元3rd并收到此错误 annotation_path = 'train2.txt' log_dir
我正在训练神经网络并得到以下输出。 loss 和 val_loss 都在减少,这让我很高兴。然而,val_acc 保持不变。这能有什么原因呢?我的数据非常不平衡,但我通过 sklearn comput
就像这样: x = keras.layers.Input(shape=(3,)) y = keras.layers.Dense(5)(x) G = keras.models.Model(x, y,na
我在 Keras 中记录“val_loss”和“val_acc”时遇到问题。 'loss' 和 'acc' 很容易,因为它们总是记录在 model.fit 的历史记录中。 如果在 fit 中启用验证,
我正在尝试使用带有 tensorflow 后端的 keras 自定义 resnet50。然而,在训练后,我的 val_loss 不断增加。尝试不同的学习率和批量大小并不能解决问题。 使用不同的预处理方
我实现了一个数据生成器,将我的训练数据分成 256 个小批量,以避免内存错误。它在训练数据上运行,但在每个时期结束时不显示验证损失和验证准确性。我还将数据生成器应用于验证数据并定义了验证步骤。我不知道
我创建了一个用于序列分类(二进制)的 LSTM 网络,其中每个样本有 25 个时间步长和 4 个特征。以下是我的keras网络拓扑: 上图,Dense层之后的激活层使用了softmax函数。我使用 b
我是 Keras 的新手,对如何理解我的模型结果有一些疑问。这是我的结果:(为方便起见,我只在每个 epoch 之后粘贴 loss acc val_loss val_acc) 对 4160 个样本进行
我是一名优秀的程序员,十分优秀!