gpt4 book ai didi

python - 在 tensorlfow 对象检测 api 中导出推理图时出错

转载 作者:行者123 更新时间:2023-12-01 15:20:12 25 4
gpt4 key购买 nike

嗨,我在做 tensorflow object detection api .我已经按照 repo 中的所有主要说明进行操作,直到现在它一直运行良好。但是突然开始出现一些奇怪的错误。我正在使用 fast rcnn之前和现在切换到 ssd mobile v2 coco .

使用命令生成推理图时

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/faster_rcnn_inception_v2_pets.config --trained_checkpoint_prefix training/model.ckpt-10250 --output_directory inference_graph

我收到以下错误:

Traceback (most recent call last): File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1356, in _do_call return fn(*args) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1341, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1429, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.NotFoundError: Key Conv/biases not found in checkpoint [[{{node save/RestoreV2}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1286, in restore {self.saver_def.filename_tensor_name: save_path}) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 950, in run run_metadata_ptr) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1173, in _run feed_dict_tensor, options, run_metadata) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1350, in _do_run run_metadata) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1370, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.NotFoundError: Key Conv/biases not found in checkpoint [[node save/RestoreV2 (defined at /home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py:331) ]]

Original stack trace for 'save/RestoreV2': File "export_inference_graph.py", line 162, in tf.app.run() File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 299, in run _run_main(main, args) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 250, in _run_main sys.exit(main(argv)) File "export_inference_graph.py", line 158, in main write_inference_graph=FLAGS.write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 497, in export_inference_graph write_inference_graph=write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 426, in _export_inference_graph trained_checkpoint_prefix=checkpoint_to_use) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 331, in write_graph_and_checkpoint tf.import_graph_def(inference_graph_def, name='') File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func return func(*args, **kwargs) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/importer.py", line 443, in import_graph_def _ProcessNewOps(graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/importer.py", line 236, in _ProcessNewOps for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3751, in _add_new_tf_operations for c_op in c_api_util.new_tf_operations(self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3751, in for c_op in c_api_util.new_tf_operations(self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3641, in _create_op_from_tf_operation ret = Operation(c_op, self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2005, in init self._traceback = tf_stack.extract_stack()

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1296, in restore names_to_keys = object_graph_key_mapping(save_path) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1614, in object_graph_key_mapping object_graph_string = reader.get_tensor(trackable.OBJECT_GRAPH_PROTO_KEY) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 678, in get_tensor return CheckpointReader_GetTensor(self, compat.as_bytes(tensor_str)) tensorflow.python.framework.errors_impl.NotFoundError: Key _CHECKPOINTABLE_OBJECT_GRAPH not found in checkpoint

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "export_inference_graph.py", line 162, in tf.app.run() File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 299, in run _run_main(main, args) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 250, in _run_main sys.exit(main(argv)) File "export_inference_graph.py", line 158, in main write_inference_graph=FLAGS.write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 497, in export_inference_graph write_inference_graph=write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 426, in _export_inference_graph trained_checkpoint_prefix=checkpoint_to_use) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 335, in write_graph_and_checkpoint saver.restore(sess, trained_checkpoint_prefix) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1302, in restore err, "a Variable name or other graph key that is missing") tensorflow.python.framework.errors_impl.NotFoundError: Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

Key Conv/biases not found in checkpoint [[node save/RestoreV2 (defined at /home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py:331) ]]

Original stack trace for 'save/RestoreV2': File "export_inference_graph.py", line 162, in tf.app.run() File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 299, in run _run_main(main, args) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/absl/app.py", line 250, in _run_main sys.exit(main(argv)) File "export_inference_graph.py", line 158, in main write_inference_graph=FLAGS.write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 497, in export_inference_graph write_inference_graph=write_inference_graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 426, in _export_inference_graph trained_checkpoint_prefix=checkpoint_to_use) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/object_detection/exporter.py", line 331, in write_graph_and_checkpoint tf.import_graph_def(inference_graph_def, name='') File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func return func(*args, **kwargs) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/importer.py", line 443, in import_graph_def _ProcessNewOps(graph) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/importer.py", line 236, in _ProcessNewOps for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3751, in _add_new_tf_operations for c_op in c_api_util.new_tf_operations(self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3751, in for c_op in c_api_util.new_tf_operations(self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3641, in _create_op_from_tf_operation ret = Operation(c_op, self) File "/home/user/anaconda3/envs/my_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2005, in init self._traceback = tf_stack.extract_stack()



实际上,它一直在正常工作,无法弄清楚现在发生了什么。我也尝试过使用快速 rcnn(之前工作过),但它也开始失败

这是配置文件。我目前正在为 2 个类(class)做这件事
# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
faster_rcnn {
num_classes: 2
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}

train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 1
learning_rate: .0002
}
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/user/Downloads/Data_Science/Git/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: false
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}


train_input_reader: {
tf_record_input_reader {
input_path: "/home/user/Downloads/Data_Science/Git/models/research/object_detection/train.record"
}
label_map_path: "/home/user/Downloads/Data_Science/Git/models/research/object_detection/training/labelmap.pbtxt"
}

eval_config: {
num_examples: 67
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}

eval_input_reader: {
tf_record_input_reader {
input_path: "C:/tensorflow1/models/research/object_detection/test.record"
}
label_map_path: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
shuffle: false
num_readers: 1
}

找到 onetwo github中的类似错误。但它没有用。任何帮助将不胜感激。如果您需要更多信息,请发表评论。谢谢!

最佳答案

你确定你的型号training/model.ckpt-10250faster_rcnn_inception_v2_pets模型?错误 NotFoundError: Key Conv/biases not found in checkpoint [[{{node save/RestoreV2}}]]表示它无法恢复 Conv/biases从检查站。

或者,确保您使用的是对象检测框架支持的 TF 版本。您可以找到所有版本 here .

关于python - 在 tensorlfow 对象检测 api 中导出推理图时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59268278/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com