gpt4 book ai didi

c++ - 类型不可知的 getter 方法

转载 作者:行者123 更新时间:2023-12-01 15:04:30 26 4
gpt4 key购买 nike

我正在为一个系统编写一个客户端,该系统以随机顺序返回自然类型的值(有些可以是 int,有些可以是 float,有些是 string [嗯,几乎是自然的])。问题是,我不知道编译时值的类型。

由于在查询远程系统之前我不知道要返回的值的类型,所以提供统一接口(interface)以允许客户端库的用户提取正确类型的值的最佳方法是什么?

如果查询远程系统一次返回一个字符串,我想要我的 get_value()返回一个字符串。如果是 int,则使其返回 int。或者,如何让客户端库以正确的类型调用 getter?

我想带有类型提示的模板是实现这一目标的好方法?

最佳答案

如果支持类型的列表有限,请检查 boost 或 std 变体。

如果不是有限列表,则 boost 或 std any(或包含 any 的变体)。

您也可以找到其他实现。标准版本在 C++17 中。

变体的简化版本可能会用 100 或两行代码编写。

这是一个粗略的 C++14 变体:

constexpr std::size_t max() { return 0; }
template<class...Ts>
constexpr std::size_t max( std::size_t t0, Ts...ts ) {
return (t0<max(ts...))?max(ts...):t0;
}
template<class T0, class...Ts>
struct index_of_in;
template<class T0, class...Ts>
struct index_of_in<T0, T0, Ts...>:std::integral_constant<std::size_t, 0> {};
template<class T0, class T1, class...Ts>
struct index_of_in<T0, T1, Ts...>:
std::integral_constant<std::size_t,
index_of_in<T0, Ts...>::value+1
>
{};

struct variant_vtable {
void(*dtor)(void*) = 0;
void(*copy)(void*, void const*) = 0;
void(*move)(void*, void*) = 0;
};
template<class T>
void populate_vtable( variant_vtable* vtable ) {
vtable->dtor = [](void* ptr){ static_cast<T*>(ptr)->~T(); };
vtable->copy = [](void* dest, void const* src){
::new(dest) T(*static_cast<T const*>(src));
};
vtable->move = [](void* dest, void* src){
::new(dest) T(std::move(*static_cast<T*>(src)));
};
}
template<class T>
variant_vtable make_vtable() {
variant_vtable r;
populate_vtable<T>(&r);
return r;
}
template<class T>
variant_vtable const* get_vtable() {
static const variant_vtable table = make_vtable<T>();
return &table;
}
template<class T0, class...Ts>
struct my_variant {
std::size_t index = -1;
variant_vtable const* vtable = 0;
static constexpr auto data_size = max(sizeof(T0),sizeof(Ts)...);
static constexpr auto data_align = max(alignof(T0),alignof(Ts)...);
template<class T>
static constexpr std::size_t index_of() {
return index_of_in<T, T0, Ts...>::value;
}
typename std::aligned_storage< data_size, data_align >::type data;
template<class T>
T* get() {
if (index_of<T>() == index)
return static_cast<T*>((void*)&data);
else
return nullptr;
}
template<class T>
T const* get() const {
return const_cast<my_variant*>(this)->get<T>();
}
template<class F, class R>
using applicator = R(*)(F&&, my_variant*);
template<class T, class F, class R>
static applicator<F, R> get_applicator() {
return [](F&& f, my_variant* ptr)->R {
return std::forward<F>(f)( *ptr->get<T>() );
};
}
template<class F, class R=typename std::result_of<F(T0&)>::type>
R visit( F&& f ) & {
if (index == (std::size_t)-1) throw std::invalid_argument("variant");
static const applicator<F, R> table[] = {
get_applicator<T0, F, R>(),
get_applicator<Ts, F, R>()...
};
return table[index]( std::forward<F>(f), this );
}
template<class F,
class R=typename std::result_of<F(T0 const&)>::type
>
R visit( F&& f ) const& {
return const_cast<my_variant*>(this)->visit(
[&f](auto const& v)->R
{
return std::forward<F>(f)(v);
}
);
}
template<class F,
class R=typename std::result_of<F(T0&&)>::type
>
R visit( F&& f ) && {
return visit( [&f](auto& v)->R {
return std::forward<F>(f)(std::move(v));
} );
}
explicit operator bool() const { return vtable; }
template<class T, class...Args>
void emplace( Args&&...args ) {
clear();
::new( (void*)&data ) T(std::forward<Args>(args)...);
index = index_of<T>();
vtable = get_vtable<T>();
}
void clear() {
if (!vtable) return;
vtable->dtor( &data );
index = -1;
vtable = nullptr;
}
~my_variant() { clear(); }

my_variant() {}
void copy_from( my_variant const& o ) {
if (this == &o) return;
clear();
if (!o.vtable) return;
o.vtable->copy( &data, &o.data );
vtable = o.vtable;
index = o.index;
}
void move_from( my_variant&& o ) {
if (this == &o) return;
clear();
if (!o.vtable) return;
o.vtable->move( &data, &o.data );
vtable = o.vtable;
index = o.index;
}
my_variant( my_variant const& o ) {
copy_from(o);
}
my_variant( my_variant && o ) {
move_from(std::move(o));
}
my_variant& operator=(my_variant const& o) {
copy_from(o);
return *this;
}
my_variant& operator=(my_variant&& o) {
move_from(std::move(o));
return *this;
}
template<class T,
typename std::enable_if<!std::is_same<typename std::decay<T>::type, my_variant>{}, int>::type =0
>
my_variant( T&& t ) {
emplace<typename std::decay<T>::type>(std::forward<T>(t));
}
};

Live example .

转换为 C++11 将包括一堆用助手替换 lambda。我不喜欢用 C++11 编写,而这个 C++14 主要是对它的机械转换。

它很粗糙,因为 visit除其他原因外,仅采用一种变体并返回 void。

代码几乎完全未经测试,但设计是合理的。

关于c++ - 类型不可知的 getter 方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45419561/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com