gpt4 book ai didi

c++ - PCL : Scale two Point-Clouds to the same size

转载 作者:行者123 更新时间:2023-12-01 14:43:49 24 4
gpt4 key购买 nike

我有两个点云并尝试将它们缩放到相同的大小。我的第一种方法是将平方根与特征值相除:

pcl::PCA<pcl::PointNormal> pca;
pca.setInputCloud(model_cloud_ptr);
Eigen::Vector3f ev_M = pca.getEigenValues();

pca.setInputCloud(segmented_cloud_ptr);
Eigen::Vector3f ev_S = pca.getEigenValues();

double s = sqrt(ev_M[0])/sqrt(ev_S[0]);

这有助于我将模型云缩放到与分段云大致相同的大小。但结果真的没有那么完美。这是一个简单的估计。我尝试使用 TransformationEstimationSVDScale还有 SampleConsensusModelRegistration喜欢 this tutorial .但是当我这样做时,我得到消息,源点/索引的数量与目标点/索引的数量不同。

当云中有不同数量的点时,将云缩放到相同大小的最佳方法是什么?

编辑 我尝试按照@dspeyer 的建议进行操作,但这给了我几乎 1.0 的比例因子
pcl::PCA<pcl::PointNormal> pca;
pca.setInputCloud(model_cloud_ptr);
Eigen::Matrix3f ev_M = pca.getEigenVectors();
Eigen::Vector3f ev_M1 = ev_M.col(0);
Eigen::Vector3f ev_M2 = ev_M.col(1);

auto dist_M1 = ev_M1.maxCoeff()-ev_M1.minCoeff();
auto dist_M2 = ev_M2.maxCoeff()-ev_M2.minCoeff();
auto distM_max = std::max(dist_M1, dist_M2);

pca.setInputCloud(segmented_cloud_ptr);
Eigen::Matrix3f ev_S = pca.getEigenVectors();
Eigen::Vector3f ev_S1 = ev_S.col(0);
Eigen::Vector3f ev_S2 = ev_S.col(1);

auto dist_S1 = ev_S1.maxCoeff()-ev_S1.minCoeff();
auto dist_S2 = ev_S2.maxCoeff()-ev_S2.minCoeff();
auto distS_max = std::max(dist_S1, dist_S2);

double s = distS_max / distM_max;

最佳答案

我建议使用每个云的特征向量来识别每个变化的主轴,然后根据该轴上的每个云变化来缩放它们。在我的示例中,我使用了一个定向边界框(本征空间中的最大最小值),但主轴(本征空间中的 x 轴)的平均值或标准偏差可能是更好的指标,具体取决于应用程序。

我在函数中留下了一些调试标志,以防它们对您有帮助,但给了它们我希望您会使用的默认值。我测试了样本和金色云的可变轴拉伸(stretch)和可变旋转。这个函数应该能够处理这一切就好了。

这种方法的一个警告是,如果翘曲是轴向可变的并且翘曲导致一个轴克服另一个轴作为变化的主轴,则此函数可能会不正确地缩放云。我不确定这个边缘案例是否与您有关。只要您的云之间有统一的缩放比例,这种情况就永远不会发生。

debugFlags:debugOverlay 将使两个输入云都按比例缩放并保持各自的特征方向(允许更容易比较)。如果为 true,primaryAxisOnly 将仅使用变化的主轴来执行缩放,如果为 false,它将独立缩放所有 3 个变化轴。

功能:

void rescaleClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& goldenCloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& sampleCloud, bool debugOverlay = false, bool primaryAxisOnly = true)
{
//analyze golden cloud
pcl::PCA<pcl::PointXYZ> pcaGolden;
pcaGolden.setInputCloud(goldenCloud);
Eigen::Matrix3f goldenEVs_Dir = pcaGolden.getEigenVectors();
Eigen::Vector4f goldenMidPt = pcaGolden.getMean();
Eigen::Matrix4f goldenTransform = Eigen::Matrix4f::Identity();
goldenTransform.block<3, 3>(0, 0) = goldenEVs_Dir;
goldenTransform.block<4, 1>(0, 3) = goldenMidPt;
pcl::PointCloud<pcl::PointXYZ>::Ptr orientedGolden(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*goldenCloud, *orientedGolden, goldenTransform.inverse());
pcl::PointXYZ goldenMin, goldenMax;
pcl::getMinMax3D(*orientedGolden, goldenMin, goldenMax);

//analyze sample cloud
pcl::PCA<pcl::PointXYZ> pcaSample;
pcaSample.setInputCloud(sampleCloud);
Eigen::Matrix3f sampleEVs_Dir = pcaSample.getEigenVectors();
Eigen::Vector4f sampleMidPt = pcaSample.getMean();
Eigen::Matrix4f sampleTransform = Eigen::Matrix4f::Identity();
sampleTransform.block<3, 3>(0, 0) = sampleEVs_Dir;
sampleTransform.block<4, 1>(0, 3) = sampleMidPt;
pcl::PointCloud<pcl::PointXYZ>::Ptr orientedSample(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*sampleCloud, *orientedSample, sampleTransform.inverse());
pcl::PointXYZ sampleMin, sampleMax;
pcl::getMinMax3D(*orientedSample, sampleMin, sampleMax);

//apply scaling to oriented sample cloud
double xScale = (sampleMax.x - sampleMin.x) / (goldenMax.x - goldenMin.x);
double yScale = (sampleMax.y - sampleMin.y) / (goldenMax.y - goldenMin.y);
double zScale = (sampleMax.z - sampleMin.z) / (goldenMax.z - goldenMin.z);

if (primaryAxisOnly) { std::cout << "scale: " << xScale << std::endl; }
else { std::cout << "xScale: " << xScale << "yScale: " << yScale << "zScale: " << zScale << std::endl; }


for (int i = 0; i < orientedSample->points.size(); i++)
{
if (primaryAxisOnly)
{
orientedSample->points[i].x = orientedSample->points[i].x / xScale;
orientedSample->points[i].y = orientedSample->points[i].y / xScale;
orientedSample->points[i].z = orientedSample->points[i].z / xScale;
}
else
{
orientedSample->points[i].x = orientedSample->points[i].x / xScale;
orientedSample->points[i].y = orientedSample->points[i].y / yScale;
orientedSample->points[i].z = orientedSample->points[i].z / zScale;
}
}
//depending on your next step, it may be reasonable to leave this cloud at its eigen orientation, but this transformation will allow this function to scale in place.

if (debugOverlay)
{
goldenCloud = orientedGolden;
sampleCloud = orientedSample;
}
else
{
pcl::transformPointCloud(*orientedSample, *sampleCloud, sampleTransform);
}
}

测试代码(您将需要自己的云和可视化工具):
pcl::PointCloud<pcl::PointXYZ>::Ptr golden(new pcl::PointCloud<pcl::PointXYZ>);
fileIO::loadFromPCD(golden, "CT_Scan_Nov_7_fullSpine.pcd");
CloudVis::simpleVis(golden);

double xStretch = 1.75;
double yStretch = 1.65;
double zStretch = 1.5;
pcl::PointCloud<pcl::PointXYZ>::Ptr stretched(new pcl::PointCloud<pcl::PointXYZ>);
for (int i = 0; i < golden->points.size(); i++)
{
pcl::PointXYZ pt = golden->points[i];
stretched->points.push_back(pcl::PointXYZ(pt.x * xStretch, pt.y * yStretch, pt.z * zStretch));
}
Eigen::Affine3f arbRotation = Eigen::Affine3f::Identity();
arbRotation.rotate(Eigen::AngleAxisf(M_PI / 4.0, Eigen::Vector3f::UnitY()));
pcl::transformPointCloud(*stretched, *stretched, arbRotation);

CloudVis::rgbClusterVis(golden, stretched);

rescaleClouds(golden, stretched,true,false);
CloudVis::rgbClusterVis(golden, stretched);

关于c++ - PCL : Scale two Point-Clouds to the same size,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59395218/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com