- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 c++ 应用程序,它通过共享内存将数据发送到 python 函数。
使用 ctypes
效果很好在 Python 中,例如 double 数和浮点数。现在,我需要添加一个 cv::Mat
到功能。
我目前的代码是:
//H
#include <iostream>
#include <opencv2\core.hpp>
#include <opencv2\highgui.hpp>
struct TransferData
{
double score;
float other;
int num;
int w;
int h;
int channels;
uchar* data;
};
#define C_OFF 1000
void fill(TransferData* data, int run, uchar* frame, int w, int h, int channels)
{
data->score = C_OFF + 1.0;
data->other = C_OFF + 2.0;
data->num = C_OFF + 3;
data->w = w;
data->h = h;
data->channels = channels;
data->data = frame;
}
namespace py = pybind11;
using namespace boost::interprocess;
void main()
{
//python setup
Py_SetProgramName(L"PYTHON");
py::scoped_interpreter guard{};
py::module py_test = py::module::import("Transfer_py");
// Create Data
windows_shared_memory shmem(create_only, "TransferDataSHMEM",
read_write, sizeof(TransferData));
mapped_region region(shmem, read_write);
std::memset(region.get_address(), 0, sizeof(TransferData));
TransferData* data = reinterpret_cast<TransferData*>(region.get_address());
//loop
for (int i = 0; i < 10; i++)
{
int64 t0 = cv::getTickCount();
std::cout << "C++ Program - Filling Data" << std::endl;
cv::Mat frame = cv::imread("input.jpg");
fill(data, i, frame.data, frame.cols, frame.rows, frame.channels());
//run the python function
//process
py::object result = py_test.attr("datathrough")();
int64 t1 = cv::getTickCount();
double secs = (t1 - t0) / cv::getTickFrequency();
std::cout << "took " << secs * 1000 << " ms" << std::endl;
}
std::cin.get();
}
import ctypes
class TransferData(ctypes.Structure):
_fields_ = [
('score', ctypes.c_double),
('other', ctypes.c_float),
('num', ctypes.c_int),
('w', ctypes.c_int),
('h', ctypes.c_int),
('frame', ctypes.c_void_p),
('channels', ctypes.c_int)
]
PY_OFF = 2000
def fill(data):
data.score = PY_OFF + 1.0
data.other = PY_OFF + 2.0
data.num = PY_OFF + 3
import TransferData
import sys
import mmap
import ctypes
def datathrough():
shmem = mmap.mmap(-1, ctypes.sizeof(TransferData.TransferData), "TransferDataSHMEM")
data = TransferData.TransferData.from_buffer(shmem)
print('Python Program - Getting Data')
print('Python Program - Filling Data')
TransferData.fill(data)
cv::Mat
帧数据到 Python 端?我将其作为
uchar*
发送来自 c++,据我了解,我需要它是
numpy
数组以获取
cv2.Mat
在 Python 中。从“宽度、高度、 channel 、帧数据”到 opencv python
cv2.Mat
的正确方法是什么? ?
最佳答案
一般的想法(在 OpenCV Python 绑定(bind)中使用)是创建一个 numpy ndarray
与 Mat
共享其数据缓冲区对象,并将其传递给 Python 函数。
注意:此时,我将示例仅限于连续矩阵。
我们可以利用 pybind11::array
类(class)。
dtype
供numpy数组使用。这是一个简单的一对一映射,我们可以使用 switch
:py::dtype determine_np_dtype(int depth)
{
switch (depth) {
case CV_8U: return py::dtype::of<uint8_t>();
case CV_8S: return py::dtype::of<int8_t>();
case CV_16U: return py::dtype::of<uint16_t>();
case CV_16S: return py::dtype::of<int16_t>();
case CV_32S: return py::dtype::of<int32_t>();
case CV_32F: return py::dtype::of<float>();
case CV_64F: return py::dtype::of<double>();
default:
throw std::invalid_argument("Unsupported data type.");
}
}
Mat
s 到 2D numpy 数组和多 channel Mat
s 到 3D numpy 数组。std::vector<std::size_t> determine_shape(cv::Mat& m)
{
if (m.channels() == 1) {
return {
static_cast<size_t>(m.rows)
, static_cast<size_t>(m.cols)
};
}
return {
static_cast<size_t>(m.rows)
, static_cast<size_t>(m.cols)
, static_cast<size_t>(m.channels())
};
}
pybind11::capsule
围绕源的浅拷贝Mat
-- 由于对象的实现方式,这有效地增加了所需时间的引用计数。py::capsule make_capsule(cv::Mat& m)
{
return py::capsule(new cv::Mat(m)
, [](void *v) { delete reinterpret_cast<cv::Mat*>(v); }
);
}
py::array mat_to_nparray(cv::Mat& m)
{
if (!m.isContinuous()) {
throw std::invalid_argument("Only continuous Mats supported.");
}
return py::array(determine_np_dtype(m.depth())
, determine_shape(m)
, m.data
, make_capsule(m));
}
def foo(arr):
print(arr.shape)
fun
.然后使用
Mat
从 C++ 调用此函数作为一个来源,我们会做这样的事情:
cv::Mat img; // Initialize this somehow
auto result = fun(mat_to_nparray(img));
#include <pybind11/pybind11.h>
#include <pybind11/embed.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <opencv2/opencv.hpp>
#include <iostream>
namespace py = pybind11;
// The 4 functions from above go here...
int main()
{
// Start the interpreter and keep it alive
py::scoped_interpreter guard{};
try {
auto locals = py::dict{};
py::exec(R"(
import numpy as np
def test_cpp_to_py(arr):
return (arr[0,0,0], 2.0, 30)
)");
auto test_cpp_to_py = py::globals()["test_cpp_to_py"];
for (int i = 0; i < 10; i++) {
int64 t0 = cv::getTickCount();
cv::Mat img(cv::Mat::zeros(1024, 1024, CV_8UC3) + cv::Scalar(1, 1, 1));
int64 t1 = cv::getTickCount();
auto result = test_cpp_to_py(mat_to_nparray(img));
int64 t2 = cv::getTickCount();
double delta0 = (t1 - t0) / cv::getTickFrequency() * 1000;
double delta1 = (t2 - t1) / cv::getTickFrequency() * 1000;
std::cout << "* " << delta0 << " ms | " << delta1 << " ms" << std::endl;
}
} catch (py::error_already_set& e) {
std::cerr << e.what() << "\n";
}
return 0;
}
* 4.56413 ms | 0.225657 ms
* 3.95923 ms | 0.0736127 ms
* 3.80335 ms | 0.0438603 ms
* 3.99262 ms | 0.0577587 ms
* 3.82262 ms | 0.0572 ms
* 3.72373 ms | 0.0394603 ms
* 3.74014 ms | 0.0405079 ms
* 3.80621 ms | 0.054546 ms
* 3.72177 ms | 0.0386222 ms
* 3.70683 ms | 0.0373651 ms
关于python - 如何通过共享内存将 cv::Mat 发送到 python?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60949451/
我到处都找了很多,找不到我的问题的答案。我试图从这个线程复制一个文本检测软件(Extracting text OpenCV)但是在代码的末尾有一条消息错误说没有匹配的矩形,即使我已经在上面绘制了一个并
我已经彻底搜索过,但没有找到直接的答案。 将 opencv 矩阵 (cv::Mat) 作为参数传递给函数,我们传递的是智能指针。我们对函数内部的输入矩阵所做的任何更改也会改变函数范围之外的矩阵。 我读
在我的应用程序中,我有一个通过引用接收 cv::Mat 对象的函数。这是函数的声明: void getChains(cv::Mat &img,std::vector &chains,cv::
我正在使用 Qt 编写一个 GUI 程序,并使用 OpenCV 进行一些视频处理。我在主 GUI 线程的标签中显示 OpenCV 进程(在单独的线程中)的结果。 我遇到的问题是 cv::waitKey
Mat a = (Mat_(3,3) = 2 int dims; //! the number of rows and columns or (-1, -1) when the arr
我尝试运行下面的代码,但出现错误。我正在为名为“Mat::at”的 OpenCV 函数创建一个包装器,并尝试使用“G++”将其编译为 Ubuntu Trusty 上的“.so”。我在下面列出了“.cp
我在 C# 中使用 EmguCV,当我想从网络摄像头抓取帧时遇到问题,语句中出现红色下划线: imgOrg = capturecam.QueryFrame(); error: Cannot impli
我正在尝试从另外两个矩阵生成一个 cv::Mat C,以便获得第三个矩阵,该矩阵由通过组合矩阵 A 和 B 的一维点生成的二维点构成。 我的问题是,我尝试的所有操作都只是连接矩阵,并没有真正将每个点与
我用 cv.imread在 python 中读取 png 文件。然后当我使用 cv.imwrite立即保存图像的功能我然后发现图像中的颜色略有变化。我正在尝试在此图像上执行字符识别,而 OCR 在 p
我尝试将 cv::bitwise_not 转换为 double 值的 cv::Mat 矩阵。我申请了 cv::bitwise_not(img, imgtemp); img是0和1的CV_64F数据。但
我正在尝试使用函数 cv.glmnet 找到最佳的 lambda(使用 RIDGE 回归)以预测某些对象的归属类别。所以我使用的代码是: CVGLM<-cv.glmnet(x,y,nfolds=34,
我有这个方法: static void WriteMatVect(const std::string& filename, const std::vector& mats); ... void Fil
下面的转换是我想要做的。 对于源图像中的每个图 block ,我知道每个角的坐标,并且我知道输出图像中每个对应角的坐标,所以我可以调用 cvWarpPerspective 扭曲每个图 block ,然
我必须在C++ / CLI中的托管和非托管代码中都使用OpenCV。 我正在尝试在托管代码中使用Emgu CV来包装OpenCV对象,但是在进行转换时遇到了麻烦。 我该怎么做: Emgu::CV::M
我正在尝试在 cv::Mat 中使用 CV_32FC4,以便它存储 RGBA32 图像。但是当我使用 cv::imwrite 将其保存为 png 文件时,结果文件始终是一个空图像。 例如,我创建了这样
无法在 VS 2017 中设置 OpenCV。我做错了什么?是的,我已将所有其他帖子设为红色。 代码: #include "opencv2/highgui/highgui.hpp" u
我有两个(相同大小,相同类型)cv:Mat 让我们称它们为 A,B。我还有另一个 cv::Mat,它是一个掩码(0 和 1 值或其他值,0 和 255 也适用)让我们称它为 M。 我需要构造一个新的
使用 OpenCV 中实现的 Scalar 类,我不明白这段代码有什么区别: Mat test; test = Scalar::all(0); 还有这个: Mat test = Scalar::all
我对这行代码感到困惑: cv::Mat_::iterator 我知道 Mat_ 属于 cv 命名空间和 vec3b 也。但是之后的最后一个 :: 操作符和 iterator 让我感到困惑!它也属于 c
我想优雅地将 Mat 转换为 Vec3f。目前我是这样做的: Mat line; Vec3f ln; ln[0] = line.
我是一名优秀的程序员,十分优秀!