gpt4 book ai didi

tensorflow - Keras 中的自注意力 GAN

转载 作者:行者123 更新时间:2023-12-01 14:05:41 24 4
gpt4 key购买 nike

我目前正在考虑在 keras 中实现 Self-Attention GAN。我想实现的方式如下:

def Attention(X, channels):
def hw_flatten(x):
return np.reshape(x, (x.shape[0], -1, x.shape[-1]))

f = Conv2D(channels//8, kernel_size=1, strides=1, padding='same')(X) # [bs, h, w, c']
g = Conv2D(channels//8, kernel_size=1, strides=1, padding='same')(X) # [bs, h, w, c']
h = Conv2D(channels, kernel_size=1, strides=1, padding='same')(X) # [bs, h, w, c]

# N = h * w
flatten_g = hw_flatten(g)
flatten_f = hw_flatten(f)
s = np.matmul(flatten_g, flatten_f.reshape((flatten_f.shape[0], flatten_f.shape[-1], -1))) # [bs, N, N]

beta = softmax(s, axis=-1) # attention map

flatten_h = hw_flatten(h) # [bs, N, C]
o = np.matmul(beta, flatten_h) # [bs, N, C]
gamma = 0

o = np.reshape(o, X.shape) # [bs, h, w, C]
y = gamma * o + X

return y

但我不知道如何添加论文中描述的可训练标量 Gamma :SAGAN

我也希望有人可以提供一些关于如何初始化可训练的 keras 标量的想法。


编辑:

我现在的实现是:

class Attention(Layer):
def __init__(self, ch, **kwargs):
super(Attention, self).__init__(**kwargs)
self.channels = ch
self.filters_f_g = self.channels // 8
self.filters_h = self.channels

def build(self, input_shape):
kernel_shape_f_g = (1, 1) + (self.channels, self.filters_f_g)
print(kernel_shape_f_g)
kernel_shape_h = (1, 1) + (self.channels, self.filters_h)

# Create a trainable weight variable for this layer:
self.gamma = self.add_weight(name='gamma', shape=[1], initializer='zeros', trainable=True)
self.kernel_f = self.add_weight(shape=kernel_shape_f_g,
initializer='glorot_uniform',
name='kernel_f')
self.kernel_g = self.add_weight(shape=kernel_shape_f_g,
initializer='glorot_uniform',
name='kernel_g')
self.kernel_h = self.add_weight(shape=kernel_shape_h,
initializer='glorot_uniform',
name='kernel_h')
self.bias_f = self.add_weight(shape=(self.filters_f_g,),
initializer='zeros',
name='bias_F')
self.bias_g = self.add_weight(shape=(self.filters_f_g,),
initializer='zeros',
name='bias_g')
self.bias_h = self.add_weight(shape=(self.filters_h,),
initializer='zeros',
name='bias_h')
super(Attention, self).build(input_shape)
# Set input spec.
self.input_spec = InputSpec(ndim=4,
axes={3: input_shape[-1]})
self.built = True


def call(self, x):
def hw_flatten(x):
return K.reshape(x, shape=[K.shape(x)[0], K.shape(x)[1]*K.shape(x)[2], K.shape(x)[-1]])

f = K.conv2d(x,
kernel=self.kernel_f,
strides=(1, 1), padding='same') # [bs, h, w, c']
f = K.bias_add(f, self.bias_f)
g = K.conv2d(x,
kernel=self.kernel_g,
strides=(1, 1), padding='same') # [bs, h, w, c']
g = K.bias_add(g, self.bias_g)
h = K.conv2d(x,
kernel=self.kernel_h,
strides=(1, 1), padding='same') # [bs, h, w, c]
h = K.bias_add(h, self.bias_h)

s = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N]

beta = K.softmax(s, axis=-1) # attention map

o = K.batch_dot(beta, hw_flatten(h)) # [bs, N, C]

o = K.reshape(o, shape=K.shape(x)) # [bs, h, w, C]
x = self.gamma * o + x

return x

def compute_output_shape(self, input_shape):
return input_shape

最佳答案

您对 original code 所做的修改存在几个问题:

  • 您不能在 Keras/TF 图形中间使用 numpy 操作。首先是因为 numpy 会尝试直接操作,而输入张量实际上只会在图形运行时被评估/接收它们的值。其次,因为 Keras/TF 将无法通过非 Keras/TF 操作进行反向传播。

    您应该将原始的 tensorflow 操作替换为它们的 keraskeras.backend 操作(例如 tf.matmul() keras.backend.batch_dot()tf.nn.doftmax() keras.backend.softmax() 等)

  • 您正在混合使用 Keras Layers(例如 Conv2D)和 Keras 操作(例如 np/keras.backend.reshape)。 Keras 操作应包含在 Lambda 中与其他层一起使用。

因为这个自定义层有一个可训练的参数(gamma),你需要 write your own custom layer ,例如:

from keras import backend as K
from keras.engine.topology import Layer

class AttentionLayer(Layer):

def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(AttentionLayer, self).__init__(**kwargs)

def build(self, input_shape):
# Create a trainable weight variable for this layer:
self.gamma = self.add_weight(name='gamma', shape=[1], initializer='uniform', trainable=True)

super(AttentionLayer, self).build(input_shape)

def call(self, x):
channels = K.int_shape(x)[-1]

x = activation(x, channels) # use TF implementation, or reimplement with Keras operations
return x

def compute_output_shape(self, input_shape):
return input_shape

关于tensorflow - Keras 中的自注意力 GAN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50819931/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com