gpt4 book ai didi

neural-network - 使用 PyCaffe 的全连接多层感知器

转载 作者:行者123 更新时间:2023-12-01 13:44:34 30 4
gpt4 key购买 nike

我是 Caffe 的新手,它的工作流程与我之前遇到的有很大不同。我用过 , , (C++) 之前用于神经网络,我想使用 Caffe,因为它提供了一些额外的东西。但是工作流程似乎很难适应。

我想从使用 PyCaffe 的简单、完全连接的 MLP 开始。我想给它提供一个 N 维输入向量并对这些向量进行多标签分类。我有训练数据。所有 Caffe 示例似乎都是为图像(方阵输入)编写的。
我也更喜欢以编程方式配置网络,而不是使用大量配置文件。例如,Keras 有一种使用 add() 顺序堆叠层的方法。

是否可以仅使用 Python 在 Caffe 中构建一个简单的网络?

最佳答案

您应该查看 caffe.NetSpec() 接口(interface):这允许您以编程方式构建网络。例如:

from caffe import layers as L, params as P, to_proto
import caffe

ns = cafe.NetSpec()

ns.fc1 = L.InnerProduct(name='fc1', inner_product_param={'num_output':100,
'weight_filler':{'type':'xavier','std':0.1},
'bias_filler':{'type':'constant','value':0}},
param=[{'lr_mult':1,'decay_mult':2},
{'lr_mult':2,'decay_mult':0}])
ns.relu1 = L.ReLU(ns.fc1, inplace=True)

关于neural-network - 使用 PyCaffe 的全连接多层感知器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36960196/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com