- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
也许这已经在其他地方提出并解决了,但我还没有找到。
假设我们有一个 numpy 数组:
a = np.arange(100).reshape(10,10)
b = np.zeros(a.shape)
start = np.array([1,4,7]) # can be arbitrary but valid values
end = np.array([3,6,9]) # can be arbitrary but valid values
start
和
end
两者都有有效值,因此每个切片也对
a
有效.
a
中子数组的值到
b
中的相应位置:
b[:, start:end] = a[:, start:end] #error
b[:, start[0]:end[0]] = a[:, start[0]:end[0]]
b[:, start[1]:end[1]] = a[:, start[1]:end[1]]
b[:, start[2]:end[2]] = a[:, start[2]:end[2]]
start
上的显式 for 循环。和
end
数组。
最佳答案
我们可以使用 broadcasting
使用与 start
的两组比较来创建要编辑的地点掩码和 end
数组,然后简单地用 boolean-indexing
赋值对于矢量化解决方案 -
# Range array for the length of columns
r = np.arange(b.shape[1])
# Broadcasting magic to give us the mask of places
mask = (start[:,None] <= r) & (end[:,None] >= r)
# Boolean-index to select and assign
b[:len(mask)][mask] = a[:len(mask)][mask]
In [222]: a = np.arange(50).reshape(5,10)
...: b = np.zeros(a.shape,dtype=int)
...: start = np.array([1,4,7])
...: end = np.array([5,6,9]) # different from sample for variety
...:
# Mask of places to be edited
In [223]: mask = (start[:,None] <= r) & (end[:,None] >= r)
In [225]: print mask
[[False True True True True True False False False False]
[False False False False True True True False False False]
[False False False False False False False True True True]]
In [226]: b[:len(mask)][mask] = a[:len(mask)][mask]
In [227]: a
Out[227]:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
In [228]: b
Out[228]:
array([[ 0, 1, 2, 3, 4, 5, 0, 0, 0, 0],
[ 0, 0, 0, 0, 14, 15, 16, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 27, 28, 29],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
关于python - numpy 如何使用数组对数组进行切片索引?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46734116/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!