gpt4 book ai didi

c++ - 当我期望 R 中的数据帧输出时,为什么 Rccp 返回类似列表的输出?

转载 作者:行者123 更新时间:2023-12-01 13:21:31 26 4
gpt4 key购买 nike

我正在尝试编写一个 .cpp,它接受一个输入 vector 并输出一个包含输入 vector 中所有可能组合的两列数据帧。我的输出给出了所需的值,但不是作为数据帧。我在 .cpp 文件中更改了什么才能获得数据帧输出?
我的 possible_combos.cpp 文件如下所示:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
GenericVector C_all_combos(GenericVector a) {
int vec_length = a.size();
int vec_length_sq = vec_length*vec_length;
GenericVector expand_vector_a(vec_length_sq);
GenericVector expand_vector_b(vec_length_sq);
for (int i=0; i<vec_length_sq; i++) { expand_vector_a[i] = a[i / vec_length]; };
for (int i=0; i<vec_length_sq; i++) { expand_vector_b[i] = a[i % vec_length]; };
DataFrame my_df = DataFrame::create(Named("v_1") = expand_vector_a,
Named("v_2") = expand_vector_b);
return my_df;
}

/*** R
C_all_combos(c(1, "Cars", 2.3))
*/
运行 Rcpp::sourceCpp("possible_combos.cpp") 的期望输出是:
    v_1    v_2
1 1
1 Cars
1 2.3
Cars 1
Cars Cars
Cars 2.3
2.3 1
2.3 Cars
2.3 2.3
但我得到的是:
    v_1..1. v_1..1..1 v_1..1..2 v_1..Cars. v_1..Cars..1 v_1..Cars..2 v_1..2.3. v_1..2.3..1 v_1..2.3..2
1 1 1 1 Cars Cars Cars 2.3 2.3 2.3
v_2..1. v_2..Cars. v_2..2.3. v_2..1..1 v_2..Cars..1 v_2..2.3..1 v_2..1..2 v_2..Cars..2 v_2..2.3..2
1 1 Cars 2.3 1 Cars 2.3 1 Cars 2.3
感谢您提供任何提示!我熟悉优秀的 R 函数,如 expand.grid() ,但想尝试替代方案。

最佳答案

主要问题是Rcpp::GenericVectorlist所以行为与 R 一致。我在下面展示了这一点以及一个解决方案,该解决方案对使用模板函数的每种类型的输入都有一个特殊情况

#include <Rcpp.h>
using namespace Rcpp;

// essentially your code
// [[Rcpp::export]]
DataFrame C_all_combos(GenericVector a) {
size_t const vec_length = a.size(),
vec_length_sq = vec_length * vec_length;
GenericVector expand_vector_a(vec_length_sq),
expand_vector_b(vec_length_sq);

for (size_t i = 0; i < vec_length_sq; i++){
expand_vector_a[i] = a[i / vec_length];
expand_vector_b[i] = a[i % vec_length];
}

return DataFrame::create(_["v_1"] = expand_vector_a,
_["v_2"] = expand_vector_b,
_["stringsAsFactors"] = false);
}

// template function used in the new solution
template<class T>
DataFrame C_all_combos_gen(T a) {
size_t const vec_length = a.size(),
vec_length_sq = vec_length * vec_length;
T expand_vector_a(vec_length_sq),
expand_vector_b(vec_length_sq);

for (size_t i = 0; i < vec_length_sq; i++){
expand_vector_a[i] = a[i / vec_length];
expand_vector_b[i] = a[i % vec_length];
}

return DataFrame::create(_["v_1"] = expand_vector_a,
_["v_2"] = expand_vector_b,
_["stringsAsFactors"] = false);
}

// export particular versions
// [[Rcpp::export]]
DataFrame C_all_combos_int(IntegerVector a){
return C_all_combos_gen<IntegerVector>(a);
}

// [[Rcpp::export]]
DataFrame C_all_combos_char(CharacterVector a){
return C_all_combos_gen<CharacterVector>(a);
}

// [[Rcpp::export]]
DataFrame C_all_combos_num(NumericVector a){
return C_all_combos_gen<NumericVector>(a);
}

// [[Rcpp::export]]
DataFrame C_all_combos_log(LogicalVector a){
return C_all_combos_gen<LogicalVector>(a);
}
我们现在可以运行以下 R 代码
  • 说明您的代码中的行为与 R 一致.
  • 表明该解决方案有效。

  • ######
    # the issue with your code. Repeat your call
    C_all_combos(c(1, "Cars", 2.3))
    #R> v_1..1. v_1..1..1 v_1..1..2 v_1..Cars. v_1..Cars..1 v_1..Cars..2 v_1..2.3. v_1..2.3..1 v_1..2.3..2 v_2..1. v_2..Cars. v_2..2.3. v_2..1..1 v_2..Cars..1 v_2..2.3..1 v_2..1..2
    #R> 1 1 1 1 Cars Cars Cars 2.3 2.3 2.3 1 Cars 2.3 1 Cars 2.3 1
    #R> v_2..Cars..2 v_2..2.3..2
    #R> 1 Cars 2.3

    # amounts to doing the following in R which yields the same
    all_combs <- expand.grid(v_1 = c(1, "Cars", 2.3), v_2 = c(1, "Cars", 2.3),
    stringsAsFactors = FALSE)
    data.frame(v_1 = as.list(all_combs$v_2),
    v_2 = as.list(all_combs$v_1))
    #R> v_1..1. v_1..1..1 v_1..1..2 v_1..Cars. v_1..Cars..1 v_1..Cars..2 v_1..2.3. v_1..2.3..1 v_1..2.3..2 v_2..1. v_2..Cars. v_2..2.3. v_2..1..1 v_2..Cars..1 v_2..2.3..1 v_2..1..2
    #R> 1 1 1 1 Cars Cars Cars 2.3 2.3 2.3 1 Cars 2.3 1 Cars 2.3 1
    #R> v_2..Cars..2 v_2..2.3..2
    #R> 1 Cars 2.3

    ######
    # here is a solution with the template function
    C_all_combos_R <- function(a){
    if(is.logical(a))
    return(C_all_combos_log(a))
    else if(is.integer(a))
    return(C_all_combos_int(a))
    else if(is.numeric(a))
    return(C_all_combos_num(a))
    else if(is.character(a))
    return(C_all_combos_char(a))

    stop("C_all_combos_R not implemented")
    }

    # it works
    C_all_combos_R(c(1, "Cars", 2.3))
    #R> v_1 v_2
    #R> 1 1 1
    #R> 2 1 Cars
    #R> 3 1 2.3
    #R> 4 Cars 1
    #R> 5 Cars Cars
    #R> 6 Cars 2.3
    #R> 7 2.3 1
    #R> 8 2.3 Cars
    #R> 9 2.3 2.3
    在 C++ 中进行类型检查等等
    您还可以在 C++ 中进行所有类型检查,避免昂贵的整数除法和取模运算,并避免 DataFrame构造函数如 AEF像这样
    #include <Rcpp.h>
    using namespace Rcpp;

    template<int T>
    SEXP C_all_combos_gen_two(Vector<T> a) {
    size_t const vec_length = a.size(),
    vec_length_sq = vec_length * vec_length;
    Vector<T> expand_vector_a(vec_length_sq),
    expand_vector_b(vec_length_sq);

    size_t i(0L);
    for(size_t jj = 0L; jj < vec_length; ++jj)
    for(size_t ii = 0L; ii < vec_length; ++i, ++ii){
    expand_vector_a[i] = a[jj];
    expand_vector_b[i] = a[ii];
    }

    List out = List::create(_["v_1"] = expand_vector_a,
    _["v_2"] = expand_vector_b);

    out.attr("class") = "data.frame";
    out.attr("row.names") = Rcpp::seq(1, vec_length_sq);

    return out;
    }

    // [[Rcpp::export]]
    SEXP C_all_combos_cpp(SEXP a){
    switch( TYPEOF(a) ){
    case INTSXP : return C_all_combos_gen_two<INTSXP>(a);
    case REALSXP: return C_all_combos_gen_two<REALSXP>(a);
    case STRSXP : return C_all_combos_gen_two<STRSXP>(a);
    case LGLSXP : return C_all_combos_gen_two<LGLSXP>(a);
    case VECSXP : return C_all_combos_gen_two<VECSXP>(a);
    default: Rcpp::stop("C_all_combos_cpp not implemented");
    }

    return DataFrame();
    }
    新版本产生
    C_all_combos_cpp(c(1, "Cars", 2.3))
    #R> v_1 v_2
    #R> 1 1 1
    #R> 2 1 Cars
    #R> 3 1 2.3
    #R> 4 Cars 1
    #R> 5 Cars Cars
    #R> 6 Cars 2.3
    #R> 7 2.3 1
    #R> 8 2.3 Cars
    #R> 9 2.3 2.3
    并且比 AEF's快解决方案
    C_all_combos_cpp(c(1, "Cars", 2.3))

    options(digits = 3)
    library(bench)
    mark(C_all_combos_cpp = C_all_combos_cpp(c(1, "Cars", 2.3)),
    AEF = C_all_combos_aef(c(1, "Cars", 2.3)), check = FALSE)
    #R> # A tibble: 2 x 13
    #R> expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time
    #R> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm>
    #R> 1 C_all_combos_cpp 4.05µs 5.49µs 169097. 6.62KB 16.9 9999 1 59.1ms
    #R> 2 AEF 15.76µs 16.96µs 57030. 2.49KB 45.7 9992 8 175.2ms

    larger_num <- rnorm(100)
    mark(C_all_combos_cpp = C_all_combos_cpp(larger_num),
    AEF = C_all_combos_aef(larger_num), check = FALSE)
    #R> # A tibble: 2 x 13
    #R> expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time
    #R> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm>
    #R> 1 C_all_combos_cpp 30.9µs 37.7µs 20817. 198KB 88.0 6862 29 330ms
    #R> 2 AEF 167.9µs 178.4µs 5558. 199KB 21.5 2585 10 465ms
    为了完整起见,这里是额外的 C++ 代码
    // [[Rcpp::export]]
    SEXP C_all_combos_aef(GenericVector a) {
    int vec_length = a.size();
    int vec_length_sq = vec_length * vec_length;
    GenericVector expand_vector_a(vec_length_sq);
    GenericVector expand_vector_b(vec_length_sq);
    for (int i=0; i<vec_length_sq; i++) { expand_vector_a[i] = a[i / vec_length]; };
    for (int i=0; i<vec_length_sq; i++) { expand_vector_b[i] = a[i % vec_length]; };

    List my_df = List::create(Named("v_1") = expand_vector_a,
    Named("v_2") = expand_vector_b);


    my_df.attr("class") = "data.frame";
    my_df.attr("row.names") = Rcpp::seq(1, vec_length_sq);

    return my_df;
    }

    关于c++ - 当我期望 R 中的数据帧输出时,为什么 Rccp 返回类似列表的输出?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63498934/

    26 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com