gpt4 book ai didi

r - 根据作为另一个数据帧的行给出的条件有效地过滤数据帧

转载 作者:行者123 更新时间:2023-12-01 13:17:42 26 4
gpt4 key购买 nike

我有以下示例数据框:

df <- structure(list(PC1 = c(1.08553700088979, 3.0948497436612, 
-0.997456334603069,
1.41407630966724, 0.287288941434462, -0.304145457046063, 0.0540331738096902,
0.276994168448363, -0.178887591197422, 1.03793040779083, -0.964485366085487,
0.781189811085296, -0.360466840689429, -2.25639643892807,
-0.688600791894463,
1.05031184739218, 3.30341296998208, 0.265388275042453, 0.187534314978584,
2.58042550274586, 0.564788667016578), PC2 = c(-0.560967999647005,
0.856204454728214, 0.720760276550347, 1.75595629874967, -0.707834522512927,
0.891530126176209, 0.631768747109977, -0.845237959897621,
-0.412613566320007,
-0.159362864836617, -0.569253016944671, -0.0181844049717689,
-0.0218393445421908, 1.86197538876216, -0.263011388351398,
0.0582985416071711,
1.7585346351499, 1.74997701136744, 0.723398654405442, -0.482322211724498,
-0.240535930597667), PC3 = c(0.36287528575844, -2.01764685704277,
-0.408829080806452, 0.97914722241214, -0.665892667247256,
-0.242401102421392,
0.497651711177106, 1.26726883331746, 1.27889899812577, 0.54485872382572,
0.191895005811088, 0.381351220912963, -0.613213748902156,
0.0685178101199476,
0.532000414181072, 1.19230092657081, 1.48731243525717, 1.16110479193897,
0.486880645956999, -2.69479147849705, 0.169949194117217)), row.names = c(NA,
-21L), class = c("tbl_df", "tbl", "data.frame"))

我想根据以下与 PC1 相关的条件集过滤 df 的行,作为另一个数据帧 f1 的行给出>:

f1 <- structure(list(xmin = c(-3.59811981997059, -3.10182743100913, 
-2.8536812365284, 2.8536812365284, 3.59811981997058), xmax =
c(-3.34997362548985,
-2.8536812365284, -2.60553504204766, 3.10182743100912, 3.84626601445132
)), row.names = c(NA, -5L), class = c("tbl_df", "tbl", "data.frame"
))

PC2的过滤要按照f2,

f2 <- structure(list(xmin = c(-2.56910324629848, -2.37879930212822, 
2.56910324629848, 2.949711134639), xmax = c(-2.37879930212822,
-2.18849535795797, 2.75940719046874, 3.14001507880926)), row.names = c(NA,
-4L), class = c("tbl_df", "tbl", "data.frame"))

换句话说,数据框 dfPC1 列中的值必须介于 -3.6 和 -3.35 之间或介于 -3.1 和 -2.85 之间,依此类推,PC2 的值必须介于 -2.57 和 -2.38 之间,依此类推。对于 df 的每一列,我都有这样一个数据框,告诉我如何过滤相应的列。

我当然可以写出条件:

df %>% filter(PC1 > -3.6 & PC1 < -3.35 | PC1 > -3.1 & PC1 < -2.85 & PC2 > -2.57 & PC2 < -2.38 ....), 

并对每一列重复此操作。但最终我会有很多条件,这不切实际。

有没有更短、更有效的方法?

谢谢!

最佳答案

实现此功能的一种方法是使用 glueevalparse 函数。

我创建了一个函数 (my_conditions),以便可以更轻松地使用它。更改列名称/条件表仍然涉及一些手动工作,但没有那么多,而且这可能也可以自动化。该函数调用 glue 包。

my_conditions <- function(column_name, condition_table){
# create conditions
conditions <- glue::glue("{column_name} > {condition_table$xmin} & {column_name} < {condition_table$xmax}")
# collapse into 1 statement using " | " for or statement
conditions <- paste0(conditions, collapse = " | ")
return(conditions)
}

调用 my_conditions("PC1", f1) 的结果是一个长字符串,它具有表 f1 的所有条件。

[1] "PC1 > -3.59811981997059 & PC1 < -3.34997362548985 | PC1 > -3.10182743100913 & PC1 < -2.8536812365284 | PC1 > -2.8536812365284 & PC1 < -2.60553504204766 | PC1 > 2.8536812365284 & PC1 < 3.10182743100912 | PC1 > 3.59811981997058 & PC1 < 3.84626601445132"

使用evalparse 来解析和评估代码中的条件。

使用 dplyr:

df %>% 
filter(eval(parse(text = my_conditions("PC1", f1))))
# A tibble: 1 x 3
PC1 PC2 PC3
<dbl> <dbl> <dbl>
1 3.09 0.856 -2.02

基于R的过滤:只需在列前添加表名

df[eval(parse(text = my_conditions("df$PC1", f1))), ]

# A tibble: 1 x 3
PC1 PC2 PC3
<dbl> <dbl> <dbl>
1 3.09 0.856 -2.02

关于r - 根据作为另一个数据帧的行给出的条件有效地过滤数据帧,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53139001/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com