- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
为什么 nclass.FD
产生的 bin 数量与 hist
不同?
nclass.FD
给了我 354 个 bin。
set.seed(1)
x <- rnorm(10^6)
nclass.FD(x)
hist
另一方面给了我 478 个 bin。
length(hist(x, breaks = "FD", plot = FALSE)$counts)
手册上说 breaks = "FD"
表示 nclass.FD
用于直方图。
Other names for which algorithms are supplied are "Scott" and "FD" / "Freedman-Diaconis" (with corresponding functions nclass.scott and class.FD).
那么,为什么我得到不同数量的箱子?
最佳答案
因此,如果您查看 ?hist
中 breaks
下的文本,您会看到:
In the last three cases the number is a suggestion only; as the breakpoints will be set to pretty values, the number is limited to 1e6 (with a warning if it was larger).
breaks="FD"
是最后提到的三个案例之一。
如果你只是这样做:
y<-hist(x, breaks = "FD", plot = FALSE)
pretty(y$breaks)
你得到的休息是:
-6 -4 -2 0 2 4 6
这不是 hist
使用的。
如果您尝试使用 pretty()
的各种选项,您会发现您得到 97 个中断:
pretty(y$breaks, n=136)
[1] -4.9 -4.8 -4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1
[20] -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2
[39] -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
[58] 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
[77] 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5
[96] 4.6 4.7
如果您对 n
使用 137 到 341 之间的任何数字,您将获得以下 193 次中断:
pretty(y$breaks, n=137)
[1] -4.90 -4.85 -4.80 -4.75 -4.70 -4.65 -4.60 -4.55 -4.50 -4.45 -4.40 -4.35 -4.30 -4.25 -4.20 -4.15
[17] -4.10 -4.05 -4.00 -3.95 -3.90 -3.85 -3.80 -3.75 -3.70 -3.65 -3.60 -3.55 -3.50 -3.45 -3.40 -3.35
[33] -3.30 -3.25 -3.20 -3.15 -3.10 -3.05 -3.00 -2.95 -2.90 -2.85 -2.80 -2.75 -2.70 -2.65 -2.60 -2.55
[49] -2.50 -2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95 -1.90 -1.85 -1.80 -1.75
[65] -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95
[81] -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15
[97] -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
[113] 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
[129] 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25
[145] 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05
[161] 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85
[177] 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65
[193] 4.70
在 342 处,您得到 hist
正在使用的 479 个中断(=478 个分箱);
pretty(y$breaks, n=342)
[1] -4.90 -4.88 -4.86 -4.84 -4.82 -4.80 -4.78 -4.76 -4.74 -4.72 -4.70 -4.68 -4.66 -4.64 -4.62 -4.60
[17] -4.58 -4.56 -4.54 -4.52 -4.50 -4.48 -4.46 -4.44 -4.42 -4.40 -4.38 -4.36 -4.34 -4.32 -4.30 -4.28
[33] -4.26 -4.24 -4.22 -4.20 -4.18 -4.16 -4.14 -4.12 -4.10 -4.08 -4.06 -4.04 -4.02 -4.00 -3.98 -3.96
[49] -3.94 -3.92 -3.90 -3.88 -3.86 -3.84 -3.82 -3.80 -3.78 -3.76 -3.74 -3.72 -3.70 -3.68 -3.66 -3.64
[65] -3.62 -3.60 -3.58 -3.56 -3.54 -3.52 -3.50 -3.48 -3.46 -3.44 -3.42 -3.40 -3.38 -3.36 -3.34 -3.32
[81] -3.30 -3.28 -3.26 -3.24 -3.22 -3.20 -3.18 -3.16 -3.14 -3.12 -3.10 -3.08 -3.06 -3.04 -3.02 -3.00
[97] -2.98 -2.96 -2.94 -2.92 -2.90 -2.88 -2.86 -2.84 -2.82 -2.80 -2.78 -2.76 -2.74 -2.72 -2.70 -2.68
[113] -2.66 -2.64 -2.62 -2.60 -2.58 -2.56 -2.54 -2.52 -2.50 -2.48 -2.46 -2.44 -2.42 -2.40 -2.38 -2.36
[129] -2.34 -2.32 -2.30 -2.28 -2.26 -2.24 -2.22 -2.20 -2.18 -2.16 -2.14 -2.12 -2.10 -2.08 -2.06 -2.04
[145] -2.02 -2.00 -1.98 -1.96 -1.94 -1.92 -1.90 -1.88 -1.86 -1.84 -1.82 -1.80 -1.78 -1.76 -1.74 -1.72
[161] -1.70 -1.68 -1.66 -1.64 -1.62 -1.60 -1.58 -1.56 -1.54 -1.52 -1.50 -1.48 -1.46 -1.44 -1.42 -1.40
[177] -1.38 -1.36 -1.34 -1.32 -1.30 -1.28 -1.26 -1.24 -1.22 -1.20 -1.18 -1.16 -1.14 -1.12 -1.10 -1.08
[193] -1.06 -1.04 -1.02 -1.00 -0.98 -0.96 -0.94 -0.92 -0.90 -0.88 -0.86 -0.84 -0.82 -0.80 -0.78 -0.76
[209] -0.74 -0.72 -0.70 -0.68 -0.66 -0.64 -0.62 -0.60 -0.58 -0.56 -0.54 -0.52 -0.50 -0.48 -0.46 -0.44
[225] -0.42 -0.40 -0.38 -0.36 -0.34 -0.32 -0.30 -0.28 -0.26 -0.24 -0.22 -0.20 -0.18 -0.16 -0.14 -0.12
[241] -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
[257] 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52
[273] 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
[289] 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16
[305] 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48
[321] 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80
[337] 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12
[353] 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44
[369] 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76
[385] 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08
[401] 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40
[417] 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72
[433] 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04
[449] 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36
[465] 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66
现在每个突破都比下一个大 0.02。看起来 hist
命令正在从 nclass.FD
公式中输入容器,但随后相当大地增加了数量以制作漂亮的均匀断点,并且它以某种方式选择使用相距 0.02 的间隔。为什么它特别选择那个我不知道。
编辑:刚刚注意到,如果您执行 pretty(x, n=354)
,您将获得与 hist
相同的 479 次中断。 x
的范围从 -4.882127 到 4.650944,所以如果你想使用 FD
中断,但要使它们均匀,那么你最终会得到 的 479 个 bin >历史
。
关于R 为什么 nclass.FD 返回的 bin 数量与 hist 函数不同?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53595466/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!