- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
作为强化学习训练系统的一部分,我正在使用四个 GPU 并行训练四个策略。对于每个模型,有两个进程—— Actor 和学习者,它们只使用他们特定的 GPU(例如,对应于模型 #2 的 Actor 和学习者只使用 GPU #2 来处理他们所有的张量)。 Actor 和 learner 通过 torch 的 share_memory_()
共享模型层。由于四个训练“子系统”是完全对称的,我希望它们在四个 GPU 中的每一个上使用完全相同数量的 GPU 内存。然而,在实践中,我看到在第一个 GPU (cuda:0
) 上分配了更多的 GPU 内存。
感觉所有内存共享都是通过 GPU #0 以某种方式完成的。有办法解决这个问题吗?
到目前为止,我尝试通过在进程 start
函数中显式更改 os.environ
来在子进程中设置 CUDA_VISIBLE_DEVICES
。这似乎没有任何效果,可能是因为子进程是从主进程派生出来的,其中 PyTorch CUDA 已经初始化,此时 envvars 似乎被忽略了。
最佳答案
好的,到目前为止我想出了一个解决方法。我的假设是正确的,如果 PyTorch CUDA 子系统在子进程 fork 之前已经初始化,则将 CUDA_VISIBLE_DEVICES 设置为子进程的不同值不会执行任何操作。
更糟糕的是,调用 torch.cuda.device_count()
就足以初始化 CUDA,因此我们甚至无法从 PyTorch 查询 GPU 的数量。解决方案要么对其进行硬编码,作为参数传递,要么在单独的进程中查询 PyTorch API。我对后者的实现:
import sys
def get_available_gpus_without_triggering_pytorch_cuda_initialization(envvars):
import subprocess
out = subprocess.run([sys.executable, '-m', 'utils.get_available_gpus'], capture_output=True, env=envvars)
text_output = out.stdout.decode()
from utils.utils import log
log.debug('Queried available GPUs: %s', text_output)
return text_output
def main():
import torch
device_count = torch.cuda.device_count()
available_gpus = ','.join(str(g) for g in range(device_count))
print(available_gpus)
return 0
if __name__ == '__main__':
sys.exit(main())
基本上这个函数调用它自己的脚本作为单独的 python 进程并读取标准输出。
我不会将此答案标记为已接受,因为我想学习一个合适的解决方案(如果存在的话)。
关于deep-learning - PyTorch 在第一个可用的 GPU 上分配更多内存(cuda :0),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59873577/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!