gpt4 book ai didi

python - 从图像opencv python中删除背景颜色

转载 作者:行者123 更新时间:2023-12-01 13:10:42 24 4
gpt4 key购买 nike

我有很多样本图像,它们的背景颜色无法控制。其中一些有黑色背景。其中一些有白色背景。其中一些有绿色背景等。

我想删除给定图像的这些背景颜色,其中图像中的对象只是一个样本。我尝试了这段代码,但它不像我期望的那样工作。

def get_holes(image, thresh):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

im_bw = cv2.threshold(gray, thresh, 255, cv2.THRESH_BINARY)[1]
im_bw_inv = cv2.bitwise_not(im_bw)

_, contour, _ = cv2.findContours(im_bw_inv, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
cv2.drawContours(im_bw_inv, [cnt], 0, 255, -1)

nt = cv2.bitwise_not(im_bw)
im_bw_inv = cv2.bitwise_or(im_bw_inv, nt)
return im_bw_inv


def remove_background(image, thresh, scale_factor=.25, kernel_range=range(1, 15), border=None):
border = border or kernel_range[-1]

holes = get_holes(image, thresh)
small = cv2.resize(holes, None, fx=scale_factor, fy=scale_factor)
bordered = cv2.copyMakeBorder(small, border, border, border, border, cv2.BORDER_CONSTANT)

for i in kernel_range:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*i+1, 2*i+1))
bordered = cv2.morphologyEx(bordered, cv2.MORPH_CLOSE, kernel)

unbordered = bordered[border: -border, border: -border]
mask = cv2.resize(unbordered, (image.shape[1], image.shape[0]))
fg = cv2.bitwise_and(image, image, mask=mask)
return fg

file = your_file_location
img = cv2.imread(file)
nb_img = dm.remove_background(img, 255)

这些是一些示例图像

sample 1

sample 2

我可以有你的建议吗?

最佳答案

这是一种简单的方法,假设每个图像只有一个样本。

  • Kmeans 颜色量化。 我们加载图像,然后执行 Kmeans 颜色量化以将图像分割为指定的颜色簇。例如 clusters=4 ,图像将被标记为四种颜色。
  • 获取二值图像。 转换为灰度、高斯模糊、自适应阈值。
  • 在蒙版上绘制最大的封闭圆。 查找轮廓,使用轮廓区域过滤对最大轮廓进行排序,然后使用 cv2.minEnclosingCircle 在蒙版上绘制最大的封闭圆.
  • 按位与。 由于我们已经隔离了要提取的所需部分,因此我们只需按位和掩码和输入图像


  • 输入图片 -> Kmeans ->二进制图像





    检测到最大的封闭圆 ->口罩 ->结果





    这是第二张图片的输出

    输入图片 -> Kmeans ->二进制图像





    检测到最大的封闭圆 ->口罩 ->结果





    代码
    import cv2
    import numpy as np

    # Kmeans color segmentation
    def kmeans_color_quantization(image, clusters=8, rounds=1):
    h, w = image.shape[:2]
    samples = np.zeros([h*w,3], dtype=np.float32)
    count = 0

    for x in range(h):
    for y in range(w):
    samples[count] = image[x][y]
    count += 1

    compactness, labels, centers = cv2.kmeans(samples,
    clusters,
    None,
    (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001),
    rounds,
    cv2.KMEANS_RANDOM_CENTERS)

    centers = np.uint8(centers)
    res = centers[labels.flatten()]
    return res.reshape((image.shape))

    # Load image and perform kmeans
    image = cv2.imread('2.jpg')
    original = image.copy()
    kmeans = kmeans_color_quantization(image, clusters=4)

    # Convert to grayscale, Gaussian blur, adaptive threshold
    gray = cv2.cvtColor(kmeans, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (3,3), 0)
    thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,21,2)

    # Draw largest enclosing circle onto a mask
    mask = np.zeros(original.shape[:2], dtype=np.uint8)
    cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
    for c in cnts:
    ((x, y), r) = cv2.minEnclosingCircle(c)
    cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 2)
    cv2.circle(mask, (int(x), int(y)), int(r), 255, -1)
    break

    # Bitwise-and for result
    result = cv2.bitwise_and(original, original, mask=mask)
    result[mask==0] = (255,255,255)

    cv2.imshow('thresh', thresh)
    cv2.imshow('result', result)
    cv2.imshow('mask', mask)
    cv2.imshow('kmeans', kmeans)
    cv2.imshow('image', image)
    cv2.waitKey()

    关于python - 从图像opencv python中删除背景颜色,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60302695/

    24 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com