- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 Neo4j 的新手,但我花了一些时间阅读文档。我想我理解了基本概念,而且我现在对 Cypher 查询非常有信心。不过,我在理解 Traversal API 的工作原理方面遇到了问题(好吧,我没有得到预期的结果,所以我猜我做错了什么)。
这是我的(非常)简单的模型(使用 API 创建):
Node sugar = graphDb.createNode(LabelType.RAW_MATERIAL.getLabel());
sugar.setProperty(PropertyType.NAME.getName(), "Sugar");
Node caramel = graphDb.createNode(LabelType.RAW_MATERIAL.getLabel(), LabelType.COOKED_MEAL.getLabel());
caramel.setProperty(PropertyType.NAME.getName(), "Caramel");
caramel.createRelationshipTo(sugar, FoodRelationshipType.CONTAINS);
我想要实现的是获取“Caramel”:CONTAINS
的所有节点。我可以通过密码查询来做到这一点:
MATCH (:CookedMeal {name: 'Caramel'}) - [:CONTAINS] -> (rawMaterials) return rawMaterials
在 Java 中,我执行了以下操作,但没有成功(因为它仅返回我传递给“traverse()”方法的节点):
TraversalDescription traversalDescription = graphDb.traversalDescription()
.depthFirst()
.relationships(FoodRelationshipType.CONTAINS, Direction.INCOMING);
Traverser traverser = traversalDescription.traverse(
Iterables.toArray(GlobalGraphOperations.at(graphDb).getAllNodesWithLabel(LabelType.COOKED_MEAL.getLabel()), Node.class)
);
for (Path path : traverser) {
System.out.println(path.endNode());
}
这就像查询没有使用遍历relationships()
方法。知道为什么这不起作用吗?
最佳答案
我找到了问题的解决方案:
必须为 TraversalDescription 提供有关从起始节点(而不是目标节点)执行操作的信息。例如,如果我得到 A - [:REL] -> B
并从 A
开始,我必须为关系指定一个 OUTGOING 方向.
这对我来说似乎不太用户友好,因为它不像过滤器,我认为它是。
此外,我需要添加 .evaluator(Evaluators.excludeStartPosition())
以从结果中排除初始节点。
我不知道解释是否足够清楚,但这是一个有效的代码:
/**
* Find components of Caramel : tests that level 1 relationship works
*/
@Test
public void testCaramelContainsSugar() {
try (Transaction ignored = graphDb.beginTx()) {
Node n = null;
TraversalDescription traversalDescription = graphDb.traversalDescription()
.breadthFirst()
.relationships(FoodRelationshipType.CONTAINS, Direction.OUTGOING)
.evaluator(Evaluators.excludeStartPosition());
Traverser traverser = traversalDescription.traverse(
getSingleNode(LabelType.COOKED_MEAL, PropertyType.NAME.getName(), "Caramel")
);
List<Node> endNodes = new ArrayList<>();
for (Path path : traverser) {
endNodes.add(path.endNode());
}
Assert.assertTrue(endNodes.contains(getSingleNode(LabelType.RAW_MATERIAL, PropertyType.NAME.getName(), "Sugar")));
}
}
关于java - Neo4j遍历API,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23549399/
在C语言中,当有变量(假设都是int)i小于j时,我们可以用等式 i^=j^=i^=j 交换两个变量的值。例如,令int i = 3,j = 5;在计算 i^=j^=i^=j 之后,我有 i = 5,
我为以下问题编写了以下代码: 给定一个由 N 个正整数组成的序列 A,编写一个程序来查找满足 i > A[j]A[i](A[i] 的 A[j] 次方 > A[j] 的 A[i] 次方)。 我的代码通过
这个表达式是从左到右解析的吗?我试图解释解析的结果,但最后的结果是错误的。 int j=10, k=10; j+=j-=j*=j; //j=j+(j-=j*=j)=j+(j-j*j) k+=k*=
给定一个整数数组 A ,我试图找出在给定位置 j ,A[j] 从每个 i=0 到 i=j 在 A 中出现了多少次。我设计了一个如下所示的解决方案 map CF[400005]; for(int i=0
你能帮我算法吗: 给定 2 个相同大小的数组 a[]和 b[]具有大于或等于 1 的整数。 查找不相等的索引 i和 j ( i != j ) 使得值 -max(a[i]*b[i] + a[i] * b
每次用J的M.副词,性能显着下降。因为我怀疑艾弗森和许比我聪明得多,我一定是做错了什么。 考虑 Collatz conjecture .这里似乎有各种各样的内存机会,但不管我放在哪里M. ,性能太差了
假设一个包含各种类型的盒装矩阵: matrix =: ('abc';'defgh';23),:('foo';'bar';45) matrix +---+-----+--+|abc|defgh|23|+
是否有可能对于两个正整数 i 和 j,(-i)/j 不等于 -(i/j)?我不知道这是否可能......我认为这将是关于位的东西,或者 char 类型的溢出或其他东西,但我找不到它。有什么想法吗? 最
假设两个不同大小的数组: N0 =: i. 50 N1 =: i. 500 应该有一种方法可以获得唯一的对,只需将两者结合起来即可。我发现的“最简单”是: ]$R =: |:,"2 |: (,.N0)
我是 J 的新用户,我只是想知道 J 包中是否实现了三次样条插值方法? 最佳答案 我自己不熟悉,但是我确实安装了所有的包,所以 $ rg -l -i spline /usr/share/j/9.02
在 Q/kdb 中,您可以使用 ': 轻松修改动词,它代表每个优先级。它会将动词应用于一个元素及其之前的邻居。例如 =': 检查值对是否相等。在 J 中,您可以轻松折叠 /\ 但它是累积的,是否有成对
嗨,我有一个 4x4 双矩阵 A 1+2i 2-1i -3-2i -1+4i 3-1i -3+2i 1-3i -1-3i 4+3i 3+5i 1-2i -1-4i
刚刚发现 J 语言,我输入: 1+^o.*0j1 I expected the answer to be 0 ,但我得到了 0j1.22465e_16。虽然这非常接近于 0,但我想知道为什么 J 应该
这个问题在这里已经有了答案: With arrays, why is it the case that a[5] == 5[a]? (20 个答案) 关闭 3 年前。 我正在阅读“C++ 编程语言”
当第一行是 1, 1/2 , 1/3 ....这是支持该问题的图像。 是否存在比朴素的 O(n^2) 方法更有效的方法? 我在研究伯努利数时遇到了这个问题,然后在研究“Akiyama-Tanigawa
我写了一段Java代码,它在无限循环中运行。 下面是代码: public class TestProgram { public static void main(String[] args){
for (int i = n; i > 0; i /= 2) { for (int j = 0; j 0; i /= 2) 的第一个循环结果 O(log N) . 第二个循环for (int
如问题中所述,需要找到数组中 (i,j) 对的总数,使得 (1) **ia[j]** 其中 i 和 j 是数组的索引。没有空间限制。 我的问题是 1) Is there any approach w
for l in range(1,len(S)-1): for i in range(1,len(S)-l): j=i+l for X in N:
第二个for循环的复杂度是多少?会是n-i吗?根据我的理解,第一个 for 循环将执行 n 次,但第二个 for 循环中的索引设置为 i。 //where n is the number elemen
我是一名优秀的程序员,十分优秀!