- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想计算一个平均值。这是带有示例数据的代码:
# sample data
Nr <- c(1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)
dph <- c(3.125000, 6.694737, 4.310680, 11.693735, 103.882353, 11.000000, 7.333333, 20.352941, 5.230769, NA, 4.615385, 47.555556, 2.941176, 18.956522, 44.320000, 28.500000, NA, 10.470588, 19.000000, 25.818182, 43.216783, 51.555556, 8.375000, 6.917647, 9.375000, 5.647059, 4.533333, 27.428571, 14.428571, NA, 1.600000, 5.764706, 4.705882, 55.272727, 2.117647, 30.888889, 41.222222, 23.444444, 2.428571, 6.200000, 17.076923, 21.280000, 40.829268, 14.500000, 6.250000, NA, 15.040000, 5.687204, 2.400000, NA, 26.375000, 18.064516, 4.000000, 6.139535, 8.470588, 128.666667, 2.235294, 34.181818, 116.000000, 6.000000, 5.777778, 10.666667, 15.428571, 54.823529, 81.315789, 42.333333)
dat <- data.frame(cbind(Nr = Nr, dph = dph))
# calculate mean directly
mean(dat$dph, na.rm = TRUE)
[1] 23.02403
# aggregate first, then calculate mean
mean(aggregate(dph ~ Nr, dat, mean, na.rm = T)$dph)
[1] 22.11743
# 23.02403 != 22.11743
为什么我会得到两个不同的结果?
问题解释:
我需要执行 Wilcoxon 检验,比较前基线和后基线。 Pre 是 3 个测量值,post 是 16 个。因为 Wilcoxon 检验需要两个长度相等的向量,所以我用 aggregate
计算每个患者的 pre 和 post 的平均值。 , 创建两个等长的向量。以上数据为pre.
编辑:
患者编号4 从数据中删除。但是使用 Nr <- rep(1:22, 3)
返回相同的结果。
最佳答案
我认为这是因为在 mean(dat$x, na.rm=T)
版本中,每个被删除的 NA
都会减少观察次数1,而如果您首先聚合,在您的示例中,第 10 行(ID 11)中有一个 NA 已被删除,但由于 ID 为 11 的其他行不包含 NA(或至少其中一个不包含 NA),因此您用于计算每个 ID 的均值
after 聚合的观察次数(唯一 ID)不会针对每个 NA 减少 1。因此,IMO 的不同之处在于将 dph
的总和除以不同数量的观察值,这在两种计算中应该相同。
您可以通过将 NA 条目更改为 0 并再次计算两个版本的平均值来验证这一点,它们将返回相同的值。
但通常您应该注意,它仅适用于此处,因为您对每个 ID 的观察次数相同(在本例中为 3)。如果它们不同,您将再次得到不同的结果。
关于r - 为什么 mean() 和 mean(aggregate()) 返回不同的结果?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27875324/
入门教程使用内置的梯度下降优化器非常有意义。但是,k均值不仅可以插入梯度下降中。似乎我不得不编写自己的优化程序,但是鉴于TensorFlow原语,我不确定如何执行此操作。 我应该采取什么方法? 最佳答
我想知道 K-Mean 和 K-Means++ 算法之间的区别。如果有人了解 K-Means++ 算法的流程,您能举例说明一下吗?虽然,我了解 K-Mean 算法,但发现如何实现 K-Means++
我有不同的数据帧均值计算值。通常,我想它们应该是一样的。或者有什么区别: daily1 = daily_above_zero['2011-2'].mean() daily1 Out[181]: P_S
我有关于人们每周上类旅行次数的数据。随着行程的距离,我对两个变量之间的关系感兴趣。 (预计频率会随着距离的增加而下降,本质上是一种负相关。)Cor.test 支持这个假设:-0.08993444,p
我了解 k-means 算法步骤。 但是我不确定该算法是否会始终收敛?或者观察总是可以从一个质心切换到另一个质心? 最佳答案 该算法总是收敛(按定义)但 不一定是全局最优 . 算法可能会从质心切换到质
(添加了可重现的示例。) 我对 rnorm 函数有点困惑。 我期待 mean(rnorm(100,mean=0,sd=1))为0;和 sd(rnorm(100,mean=0,sd=1))为 1。但给出
我想计算一个平均值。这是带有示例数据的代码: # sample data Nr <- c(1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
我有一个像这样的数据框: Id F M R 7 1 286 907 12 1 286 907 17 1 186 1271 21 1 296 905 30 1
如果我们将 K-means 和顺序 K-means 方法应用于具有相同初始设置的相同数据集,我们会得到相同的结果吗?解释你的理由。 个人认为答案是否定的,顺序K-means得到的结果取决于数据点的呈现
我想使用 MEAN JavaScript 堆栈,但我注意到有两个不同的堆栈,它们有自己的网站和安装方法:mean.js 和 mean.io。所以我开始问自己这个问题:“我用哪一个?”。 所以为了回答这
似乎有多种方法可以安装 Mean Stack (mean.io) 的所有模块。但是,在 c9.io 中执行此操作的最佳方法是什么?我一直在尝试很多事情,但我似乎并没有全部掌握。 c9.io 有专门的
在开发过程中,我希望加载原始(未聚合).js 文件。 Mean.io 文档说: All javascript within public is automatically aggregated wit
我正在尝试添加 angular-material到 mean.io应用。 在我的自定义包中,我使用 bower 来安装 angular-material,现在我有一个 .../public/asset
我只运行以下三行: df = pd.read_hdf('data.h5') print(df.mean()) print(df['derived_3'].mean()) 第一个 print 列出了每一
k-means++算法有助于原始k-means算法的以下两点: 原始的 k-means 算法在输入大小的 super 多项式的最坏情况下运行时间,而 k-means++ 声称是 O(log k)。 与
这两个字段有什么区别? : 每个请求的时间(平均) 每个请求的时间(平均,跨所有并发请求) 它们每个是如何计算的? 示例输出: Time per request: 3953.446 [ms
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 7年前关闭。 Improve this qu
我想看看是否可以根据它们所处理的目标函数来比较两者的性能? 最佳答案 顺便说一句,Fuzzy-C-Means (FCM) 聚类算法也称为Soft K-Means。 目标函数实际上是相同的,唯一的区别是
虽然我看到了很多与此相关的问题,但我并没有真正得到答案,可能是因为我是使用 nltk 集群的新手。我确实需要对聚类新手进行基本解释,特别是关于 NLTK K 均值聚类的向量表示以及如何使用它。我有一个
我在学习mean.io来自 this tutorial video ,它显示了示例包(由 mean package mymodule 创建。它也在 docs 的“包”下进行了描述)。我想帮助了解给定的
我是一名优秀的程序员,十分优秀!