gpt4 book ai didi

python - 如何将权重传递给 Seaborn FacetGrid

转载 作者:行者123 更新时间:2023-12-01 12:33:39 27 4
gpt4 key购买 nike

我有一组数据,我正在尝试使用 seaborn 中的 FacetGrid 绘制这些数据。每个数据点都有一个与之相关的权重,我想在网格的每个方面绘制一个加权直方图。

例如,假设我有以下(随机创建的)数据集:

import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

d = pd.DataFrame(np.array([np.random.randint(0, 6, 5000),
np.random.normal(0, 1., 5000),
np.random.uniform(0, 1, 5000)]).T,
columns=('cat', 'val', 'weight'))

这些数据的结构如下:
   cat       val    weight
0 0 -0.844542 0.668081
1 0 -0.521177 0.521396
2 1 -1.160358 0.788465
3 0 -0.394765 0.115242
4 5 0.735328 0.003495

通常,如果我没有权重,我会这样绘制:
fg = sns.FacetGrid(d, col='cat', col_wrap=3)
fg.map(plt.hist, 'val')

这构成了一个直方图网格,其中每个直方图显示了变量 val 的分布。对于类别的一个值 cat .

我想做的是对每个直方图进行加权。如果我用 Matplotlib 制作单个直方图,我会这样做:
plt.hist(d.val, weights=d.weight)

我尝试将 weights 参数传递给 FacetGrid.map ,但由于 seaborn 在内部对数据进行切片以制作网格的方式,它会引发错误:
fg.map(plt.hist, 'val', weights=d.weight)

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-33-1403d26cff86> in <module>()
9
10 fg = sns.FacetGrid(d, col='cat', col_wrap=3)
---> 11 fg.map(plt.hist, 'val', weights=d.weight)

/opt/conda/lib/python3.4/site-packages/seaborn/axisgrid.py in map(self, func, *args, **kwargs)
443
444 # Draw the plot
--> 445 self._facet_plot(func, ax, plot_args, kwargs)
446
447 # Finalize the annotations and layout

/opt/conda/lib/python3.4/site-packages/seaborn/axisgrid.py in _facet_plot(self, func, ax, plot_args, plot_kwargs)
527
528 # Draw the plot
--> 529 func(*plot_args, **plot_kwargs)
530
531 # Sort out the supporting information

/opt/conda/lib/python3.4/site-packages/matplotlib/pyplot.py in hist(x, bins, range, normed, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, hold, **kwargs)
2894 histtype=histtype, align=align, orientation=orientation,
2895 rwidth=rwidth, log=log, color=color, label=label,
-> 2896 stacked=stacked, **kwargs)
2897 draw_if_interactive()
2898 finally:

/opt/conda/lib/python3.4/site-packages/matplotlib/axes/_axes.py in hist(self, x, bins, range, normed, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)
5647 if len(w[i]) != len(x[i]):
5648 raise ValueError(
-> 5649 'weights should have the same shape as x')
5650 else:
5651 w = [None]*nx

ValueError: weights should have the same shape as x

那么,有没有办法制作这样的情节呢?

最佳答案

你需要在 plt.hist 周围写一个小包装函数接受一个权重向量作为位置参数。就像是

def weighted_hist(x, weights, **kwargs):
plt.hist(x, weights=weights, **kwargs)

g = sns.FacetGrid(df, ...)
g.map(weighted_hist, "x_var", "weight_var")
g.set_axis_labels("x_var", "count")

关于python - 如何将权重传递给 Seaborn FacetGrid,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31301810/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com