- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想动态生成一个包含报告标题记录的数据框,因此根据以下字符串的值创建一个数据框:
val headerDescs : String = "Name,Age,Location"
val headerSchema = StructType(headerDescs.split(",").map(fieldName => StructField(fieldName, StringType, true)))
但是现在我想对数据做同样的事情(实际上是相同的数据,即元数据)。
我创建一个 RDD:
val headerRDD = sc.parallelize(headerDescs.split(","))
然后我打算使用 createDataFrame 来创建它:
val headerDf = sqlContext.createDataFrame(headerRDD, headerSchema)
但是失败了,因为 createDataframe
需要一个 RDD[Row]
,但是我的 RDD 是一个字符串数组 - 我找不到转换我的 RDD 的方法到 Row RDD,然后动态映射字段。我见过的示例假设您事先知道列数,但我希望最终能够在不更改代码的情况下更改列 - 例如,将列放在文件中。
基于第一个答案的代码摘录:
val headerDescs : String = "Name,Age,Location"
// create the schema from a string, splitting by delimiter
val headerSchema = StructType(headerDescs.split(",").map(fieldName => StructField(fieldName, StringType, true)))
// create a row from a string, splitting by delimiter
val headerRDDRows = sc.parallelize(headerDescs.split(",")).map( a => Row(a))
val headerDf = sqlContext.createDataFrame(headerRDDRows, headerSchema)
headerDf.show()
执行此结果:
+--------+---+--------+
| Name|Age|Location|
+--------+---+--------+
| Name|
| Age|
|Location|
+--------+---+-------
最佳答案
要将 RDD[Array[String]]
转换为 RDD[Row]
,您需要执行以下步骤:
导入 org.apache.spark.sql.Row
val headerRDD = sc.parallelize(Seq(headerDescs.split(","))).map(x=>Row(x(0),x(1),x(2)))
scala> val headerSchema = StructType(headerDescs.split(",").map(fieldName => StructField(fieldName, StringType, true)))
headerSchema: org.apache.spark.sql.types.StructType = StructType(StructField(Name,StringType,true), StructField(Age,StringType,true), StructField(Location,StringType,true))
scala> val headerRDD = sc.parallelize(Seq(headerDescs.split(","))).map(x=>Row(x(0),x(1),x(2)))
headerRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[6] at map at <console>:34
scala> val headerDf = sqlContext.createDataFrame(headerRDD, headerSchema)
headerDf: org.apache.spark.sql.DataFrame = [Name: string, Age: string, Location: string]
scala> headerDf.printSchema
root
|-- Name: string (nullable = true)
|-- Age: string (nullable = true)
|-- Location: string (nullable = true)
scala> headerDf.show
+----+---+--------+
|Name|Age|Location|
+----+---+--------+
|Name|Age|Location|
+----+---+--------+
这会给你一个 RDD[Row]
For reading through file
val vRDD = sc.textFile("..**filepath**.").map(_.split(",")).map(a => Row.fromSeq(a))
val headerDf = sqlContext.createDataFrame(vRDD , headerSchema)
Using Spark-CSV package :
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true") // Use first line of all files as header
.schema(headerSchema) // defining based on the custom schema
.load("cars.csv")
或
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
.load("cars.csv")
您还可以在其 documentation 中探索各种选项。 .
关于apache-spark - 以编程方式为 Apache Spark 中的数据框生成模式和数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41745321/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!