- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 Python 2.7 和 Pandas 0.19.2
我看过一些类似的问题/答案来解决这个问题,但仍然无法解决。
我有以下数据框:
Date name objects
0 2005-11-17 Pete 6
1 2014-02-04 Rob 3
2 2012-02-13 Rob 2
3 2004-12-16 Julia 4
4 2012-02-13 Mike 9
我想按如下方式 reshape 它:
Pete Rob Julia Mike
2005-11-17 6 Nan Nan Nan
2014-02-04 Nan 3 Nan Nan
2012-02-13 Nan 2 Nan 9
2004-12-16 Nan Nan 4 Nan
我一直在尝试运行 df.pivot(index='Date', columns='name', value='objects')
但我得到一个 'index has duplicate value '
错误。
我认为 pivot
或 pivot_table
在这些情况下工作,因为索引和列之间基本上没有“冲突”(例如,“Rob”和“2014”的多个值-02-04' 在数据框中)。
我不希望聚合 - 只是 reshape 。同样在示例中,日期未按顺序排列 - 但这无关紧要。
我觉得这应该很容易解决,但我看不到。有人可以分享一些见解吗?
提前致谢。
最佳答案
您的真实数据似乎是重复的,请参见示例:
print (df)
Date name objects
0 2005-11-17 Pete 6
1 2014-02-04 Rob 3
2 2012-02-13 Rob 2
3 2004-12-16 Julia 4
4 2012-02-13 Mike 9 <-duplicates for 2012-02-13 and Mike
5 2012-02-13 Mike 18 <-duplicates for 2012-02-13 and Mike
解决方案是 pivot_table
对于某些聚合函数,默认为 np.mean
但可以更改为 sum
、'meadian'、first
、last
.
df = df.pivot_table(index='Date', columns='name', values='objects', aggfunc=np.mean)
print (df)
name Julia Mike Pete Rob
Date
2004-12-16 4.0 NaN NaN NaN
2005-11-17 NaN NaN 6.0 NaN
2012-02-13 NaN 13.5 NaN 2.0 <-13.5 is mean
2014-02-04 NaN NaN NaN 3.0
另一种使用groupby
、聚合函数和unstack
的解决方案:
df = df.groupby(['Date','name'])['objects'].mean().unstack()
print (df)
name Julia Mike Pete Rob
Date
2004-12-16 4.0 NaN NaN NaN
2005-11-17 NaN NaN 6.0 NaN
2012-02-13 NaN 13.5 NaN 2.0
2014-02-04 NaN NaN NaN 3.0
检查是否重复可用 duplicated
与 boolean indexing
:
df = df[df.duplicated(subset=['Date','name'], keep=False)]
print (df)
Date name objects
4 2012-02-13 Mike 9
5 2012-02-13 Mike 18
关于Pandas Dataframe Reshape/Pivot - 索引错误中的重复值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42612374/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!