gpt4 book ai didi

r - 在ggplot中绘制经验和拟合半变异函数

转载 作者:行者123 更新时间:2023-12-01 12:11:26 25 4
gpt4 key购买 nike

我正在使用半变异函数研究数据中的空间自相关。我的数据:

Response <- c(21L, 36L, 30L, 29L, 30L, 45L, 100L, 0L, 0L, 0L, 0L, 0L, 59L, 
18L, 24L, 23L, 26L, 29L, 23L, 21L, 14L, 30L, 43L, 14L, 8L, 0L,
0L, 0L, 0L, 0L, 23L, 38L, 20L, 28L, 45L, 21L, 46L, 23L, 6L, 4L,
0L, 0L, 0L, 0L, 0L, 17L, 10L, 41L, 24L, 31L, 16L, 23L, 31L, 6L,
2L, 0L, 0L, 0L, 0L, 0L, 8L, 20L, 18L, 18L, 40L, 9L, 1L, 25L,
4L, 34L, 0L, 0L, 0L, 0L, 0L, 39L, 8L, 7L, 22L, 16L, 18L, 23L,
11L, 25L, 28L, 0L, 0L, 0L, 0L, 0L, 3L, 22L, 11L, 9L, 123L, 50L,
12L, 1L, 46L, 1L, 4L, 1L, 2L, 0L, 37L)

Covar1 <- structure(c(1L, 3L, 1L, 1L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
3L, 3L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 2L,
1L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 1L,
3L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 3L,
3L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 1L,
3L, 1L, 1L, 3L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 1L), .Label = c("A",
"B", "C"), class = "factor")

Covar2 <- structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("1",
"2", "3", "4", "5", "6", "7"), class = "factor")

df <- data.frame(Response, Covar1, Covar2)

我运行一个简单的模型,使用 gstat从残差和空间坐标制作经验半变异函数和拟合半变异函数,并绘制它们:
mod1 <- glm(Response ~ Covar1 * Covar2, data = df)

geo <- as.data.frame(resid(mod1))

geo$x <- c(34.59481, 34.60548, 34.59825, 34.59039, 34.56546, 34.56749,
34.5964, 34.40986, 34.40083, 34.39536, 34.41291, 34.40512, 34.36381,
34.35335102, 34.32548, 34.59481, 34.60548, 34.59825, 34.59039,
34.56749, 34.56546, 34.5964, 34.36381, 34.35335102, 34.32548,
34.41291, 34.40986, 34.40512, 34.40083, 34.39536, 34.59481, 34.60548,
34.59825, 34.59039, 34.56749, 34.56546, 34.5964, 34.36381, 34.35335102,
34.32548, 34.41291, 34.40986, 34.40512, 34.40083, 34.39536, 34.59481,
34.60548, 34.59825, 34.59039, 34.56749, 34.56546, 34.5964, 34.36381,
34.35335102, 34.32548, 34.41291, 34.40986, 34.40512, 34.40083,
34.39536, 34.59481, 34.60548, 34.59825, 34.59039, 34.36381, 34.35335102,
34.32548, 34.56749, 34.56546, 34.5964, 34.41291, 34.40986, 34.40512,
34.40083, 34.39536, 34.36381, 34.35335102, 34.32548, 34.56546,
34.56749, 34.5964, 34.59481, 34.60548, 34.59825, 34.59039, 34.41291,
34.40986, 34.40512, 34.40083, 34.39536, 34.32548, 34.35335102,
34.59481, 34.60548, 34.59039, 34.59825, 34.56546, 34.56749, 34.5964,
34.41291, 34.40986, 34.40512, 34.40083, 34.39536, 34.36381)

geo$y <- c(-2.18762, -2.18308, -2.16174, -2.16018, -2.14787, -2.15296,
-2.12863, -2.14325, -2.14552, -2.1454, -2.13926, -2.14652, -2.12463,
-2.121925978, -2.10213, -2.18762, -2.18308, -2.16174, -2.16018,
-2.15296, -2.14787, -2.12863, -2.12463, -2.121925978, -2.10213,
-2.13926, -2.14325, -2.14652, -2.14552, -2.1454, -2.18762, -2.18308,
-2.16174, -2.16018, -2.15296, -2.14787, -2.12863, -2.12463, -2.121925978,
-2.10213, -2.13926, -2.14325, -2.14652, -2.14552, -2.1454, -2.18762,
-2.18308, -2.16174, -2.16018, -2.15296, -2.14787, -2.12863, -2.12463,
-2.121925978, -2.10213, -2.13926, -2.14325, -2.14652, -2.14552,
-2.1454, -2.18762, -2.18308, -2.16174, -2.16018, -2.12463, -2.121925978,
-2.10213, -2.15296, -2.14787, -2.12863, -2.13926, -2.14325, -2.14652,
-2.14552, -2.1454, -2.12463, -2.121925978, -2.10213, -2.14787,
-2.15296, -2.12863, -2.18762, -2.18308, -2.16174, -2.16018, -2.13926,
-2.14325, -2.14652, -2.14552, -2.1454, -2.10213, -2.121925978,
-2.18762, -2.18308, -2.16018, -2.16174, -2.14787, -2.15296, -2.12863,
-2.13926, -2.14325, -2.14652, -2.14552, -2.1454, -2.12463)

library(sp)
names(geo) <- c("resids", "x", "y")
coordinates(geo) <- ~ x + y
proj4string(geo) <- CRS("+proj=longlat +datum=WGS84")

library(gstat)
var1 <- variogram(resids ~ x + y, data = geo)
v.fit1 = fit.variogram(var1, vgm(50, "Exp", 2, 50))
plot(var1, v.fit1)

enter image description here

该图是“格子”类,它不从标准的基本 R 图形中获取参数,因此我想使用 ggplot 来创建我的图形。我可以绘制我的经验变异函数(仅点):
ggplot(var1, aes(x=dist,y=gamma)) +
geom_point()

但是我在绘制拟合模型(线)时遇到了麻烦。任何帮助将非常感激。

最佳答案

您可以通过 variogramLine() 为给定的变异函数模型生成半方差值。来自包裹 gstat .然后您可以在 geom_line() 中使用它们绘制这些拟合值。

我只得到最大距离的值 var1所以两个数据集的范围将是相同的。

preds = variogramLine(v.fit1, maxdist = max(var1$dist))
head(preds)
dist gamma
1 1.037174e-05 67.13427
2 5.212964e-02 71.24628
3 1.042489e-01 75.23463
4 1.563682e-01 79.10305
5 2.084874e-01 82.85514
6 2.606067e-01 86.49440

现在添加一个 geom_line()使用这个新数据集将图层添加到绘图中。 x 的名称和 y变量与 var1 中的相同所以你不需要映射任何新的美学。
ggplot(var1, aes(x = dist, y = gamma)) +
geom_point() +
geom_line(data = preds)

enter image description here

关于r - 在ggplot中绘制经验和拟合半变异函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51501256/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com